行星内部的热演化与结晶基岩浆海洋耦合的参数化地幔对流

IF 4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Victoria Auerbach, Dave R. Stegman
{"title":"行星内部的热演化与结晶基岩浆海洋耦合的参数化地幔对流","authors":"Victoria Auerbach,&nbsp;Dave R. Stegman","doi":"10.1029/2025JE009016","DOIUrl":null,"url":null,"abstract":"<p>Basal magma oceans (BMOs) persisting in the silicate portion of terrestrial planets for long periods of time (<span></span><math>\n <semantics>\n <mrow>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${ &gt;} $</annotation>\n </semantics></math>1 Gyr) offer the potential to reconcile unexplained contradictions between geochemical and geophysical observations, yet our knowledge of how the presence of such layers influence planetary evolution is far from mature. In this study, we produce 1D thermal evolution models using parameterized convection for Earth and Venus-like planets with consideration of a long-lived BMO. In these models, we independently vary initial conditions and material properties of the system which are shown to have strong control on the thermal evolution of the system and associated crystallization rate of the BMO. We find small variations in viscosity prefactors, lower mantle activation volume, or melt depression of the liquid melting curve to have significant impact on the solid-liquid interface and temperature evolution of the system. Similarly, small variations in initial conditions produces a shift in comparable Earth and Venus models. In general, we observe the thermal boundary layer between the solid and liquid mantle layers governs the coupling of the system and therefore its evolution. These parameterized models demonstrate the capability to better understand impact of individual parameters and coupling of interior layers, which drive the thermal evolution for both Earth and Venus cases.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE009016","citationCount":"0","resultStr":"{\"title\":\"Thermal Evolution of Planetary Interiors With a Crystallizing Basal Magma Ocean Coupled to Parameterized Mantle Convection\",\"authors\":\"Victoria Auerbach,&nbsp;Dave R. Stegman\",\"doi\":\"10.1029/2025JE009016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Basal magma oceans (BMOs) persisting in the silicate portion of terrestrial planets for long periods of time (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>&gt;</mo>\\n </mrow>\\n <annotation> ${ &gt;} $</annotation>\\n </semantics></math>1 Gyr) offer the potential to reconcile unexplained contradictions between geochemical and geophysical observations, yet our knowledge of how the presence of such layers influence planetary evolution is far from mature. In this study, we produce 1D thermal evolution models using parameterized convection for Earth and Venus-like planets with consideration of a long-lived BMO. In these models, we independently vary initial conditions and material properties of the system which are shown to have strong control on the thermal evolution of the system and associated crystallization rate of the BMO. We find small variations in viscosity prefactors, lower mantle activation volume, or melt depression of the liquid melting curve to have significant impact on the solid-liquid interface and temperature evolution of the system. Similarly, small variations in initial conditions produces a shift in comparable Earth and Venus models. In general, we observe the thermal boundary layer between the solid and liquid mantle layers governs the coupling of the system and therefore its evolution. These parameterized models demonstrate the capability to better understand impact of individual parameters and coupling of interior layers, which drive the thermal evolution for both Earth and Venus cases.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 7\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE009016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JE009016\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JE009016","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

基底岩浆海洋(BMOs)长期存在于类地行星的硅酸盐部分(>;{{>} $ 1 Gyr)提供了调和地球化学和地球物理观测之间无法解释的矛盾的潜力,然而,我们对这些层的存在如何影响行星演化的知识还远远不够成熟。在本研究中,我们利用参数化对流建立了考虑长寿命BMO的地球和类金星行星的一维热演化模型。在这些模型中,我们独立地改变了系统的初始条件和材料性质,这些条件和材料性质对系统的热演化和BMO的相关结晶速率有很强的控制作用。我们发现黏度前因子、下地幔活化体积或熔融曲线的熔体凹陷对系统的固液界面和温度演化有重要影响。同样,初始条件的微小变化也会在地球和金星的可比模型中产生变化。总的来说,我们观察到固体和液体地幔层之间的热边界层控制了系统的耦合,从而控制了系统的演化。这些参数化模型表明,能够更好地理解单个参数和内层耦合的影响,从而驱动地球和金星的热演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Evolution of Planetary Interiors With a Crystallizing Basal Magma Ocean Coupled to Parameterized Mantle Convection

Thermal Evolution of Planetary Interiors With a Crystallizing Basal Magma Ocean Coupled to Parameterized Mantle Convection

Basal magma oceans (BMOs) persisting in the silicate portion of terrestrial planets for long periods of time ( > ${ >} $ 1 Gyr) offer the potential to reconcile unexplained contradictions between geochemical and geophysical observations, yet our knowledge of how the presence of such layers influence planetary evolution is far from mature. In this study, we produce 1D thermal evolution models using parameterized convection for Earth and Venus-like planets with consideration of a long-lived BMO. In these models, we independently vary initial conditions and material properties of the system which are shown to have strong control on the thermal evolution of the system and associated crystallization rate of the BMO. We find small variations in viscosity prefactors, lower mantle activation volume, or melt depression of the liquid melting curve to have significant impact on the solid-liquid interface and temperature evolution of the system. Similarly, small variations in initial conditions produces a shift in comparable Earth and Venus models. In general, we observe the thermal boundary layer between the solid and liquid mantle layers governs the coupling of the system and therefore its evolution. These parameterized models demonstrate the capability to better understand impact of individual parameters and coupling of interior layers, which drive the thermal evolution for both Earth and Venus cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信