碎片化方法与神经网络电位相结合的大规模计算

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rei Oshima, Mikito Fujinami, Yuya Nakajima, Hiromi Nakai
{"title":"碎片化方法与神经网络电位相结合的大规模计算","authors":"Rei Oshima,&nbsp;Mikito Fujinami,&nbsp;Yuya Nakajima,&nbsp;Hiromi Nakai","doi":"10.1002/jcc.70193","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A fragmentation method is introduced to enable large-scale molecular simulations using neural network potentials (NNPs). The method partitions a system into cube-shaped fragments and reconstructs the total energy using a many-body expansion formalism with a distance-based cut-off approximation. Validation with Au, NaCl, diamond, H<sub>2</sub>O, and graphite crystals demonstrated that including three-body interactions with 26 neighboring fragments reduces per-atom energy error to within 0.04 eV. This approach enables simulations of systems with up to 1 million atoms, surpassing conventional NNP limits. The scaling exponent for three-body calculations remains below 1.64, suggesting feasibility for even larger-scale applications.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 20","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Calculations by Integrating the Fragmentation Approach With Neural Network Potentials\",\"authors\":\"Rei Oshima,&nbsp;Mikito Fujinami,&nbsp;Yuya Nakajima,&nbsp;Hiromi Nakai\",\"doi\":\"10.1002/jcc.70193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A fragmentation method is introduced to enable large-scale molecular simulations using neural network potentials (NNPs). The method partitions a system into cube-shaped fragments and reconstructs the total energy using a many-body expansion formalism with a distance-based cut-off approximation. Validation with Au, NaCl, diamond, H<sub>2</sub>O, and graphite crystals demonstrated that including three-body interactions with 26 neighboring fragments reduces per-atom energy error to within 0.04 eV. This approach enables simulations of systems with up to 1 million atoms, surpassing conventional NNP limits. The scaling exponent for three-body calculations remains below 1.64, suggesting feasibility for even larger-scale applications.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 20\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70193\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70193","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种利用神经网络电位(NNPs)进行大规模分子模拟的碎片化方法。该方法将系统划分为立方体碎片,并利用基于距离的截止近似的多体展开形式重构总能量。通过Au、NaCl、金刚石、H2O和石墨晶体的验证表明,包含26个相邻碎片的三体相互作用可将每个原子的能量误差降低到0.04 eV以内。这种方法可以模拟多达100万个原子的系统,超越了传统的NNP限制。三体计算的缩放指数保持在1.64以下,表明更大规模应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large-Scale Calculations by Integrating the Fragmentation Approach With Neural Network Potentials

Large-Scale Calculations by Integrating the Fragmentation Approach With Neural Network Potentials

A fragmentation method is introduced to enable large-scale molecular simulations using neural network potentials (NNPs). The method partitions a system into cube-shaped fragments and reconstructs the total energy using a many-body expansion formalism with a distance-based cut-off approximation. Validation with Au, NaCl, diamond, H2O, and graphite crystals demonstrated that including three-body interactions with 26 neighboring fragments reduces per-atom energy error to within 0.04 eV. This approach enables simulations of systems with up to 1 million atoms, surpassing conventional NNP limits. The scaling exponent for three-body calculations remains below 1.64, suggesting feasibility for even larger-scale applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信