Arnav Sanjay Karnik;Nikhil Nair;Yashas Sagili;P. B. Shanthi
{"title":"药用植物物种识别的多尺度脉化模式分析","authors":"Arnav Sanjay Karnik;Nikhil Nair;Yashas Sagili;P. B. Shanthi","doi":"10.1109/ACCESS.2025.3589278","DOIUrl":null,"url":null,"abstract":"This research addresses the challenge of medicinal plant species recognition based on leaf images by focusing on venation patterns as discriminative features. Venation patterns—defined by the hierarchical arrangement of veins within a leaf—carry significant taxonomic information that is often overlooked by conventional plant classification approaches. We propose a novel, venation-aware methodology that combines specialized image preprocessing techniques with both transfer learning and custom-designed deep learning architectures. Our method extracts and analyzes venation patterns at multiple spatial scales, capturing both global and fine-grained structural details to improve classification performance. To validate the effectiveness of our approach, we developed and evaluated three distinct model architectures: 1) a modified ResNet-50 model utilizing transfer learning with an adapted input pipeline for venation-aware channels; 2) a custom-built convolutional neural network, VenationNet, explicitly designed for multi-scale venation analysis; and 3) a Dual-Stream CNN architecture that processes leaf texture and venation maps independently before merging via attention-based fusion. Preprocessing involves contrast enhancement, Frangi filtering for venation extraction, and edge detection to create a three-channel input comprising RGB, venation, and edge maps. Experimental evaluation using the Indian Medicinal Plants Dataset demonstrates that our venation-centric strategy significantly outperforms traditional CNN-based approaches, achieving higher accuracy, precision, recall, and F1-scores across diverse plant categories. This research contributes a practical and scalable solution for reliable medicinal plant identification, which is crucial for pharmacological research, biodiversity monitoring, and traditional medicine practices. Moreover, our approach is well-suited for deployment in real-time mobile and edge computing environments.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"125526-125536"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080426","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Venation Pattern Analysis for Medicinal Plant Species Recognition\",\"authors\":\"Arnav Sanjay Karnik;Nikhil Nair;Yashas Sagili;P. B. Shanthi\",\"doi\":\"10.1109/ACCESS.2025.3589278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research addresses the challenge of medicinal plant species recognition based on leaf images by focusing on venation patterns as discriminative features. Venation patterns—defined by the hierarchical arrangement of veins within a leaf—carry significant taxonomic information that is often overlooked by conventional plant classification approaches. We propose a novel, venation-aware methodology that combines specialized image preprocessing techniques with both transfer learning and custom-designed deep learning architectures. Our method extracts and analyzes venation patterns at multiple spatial scales, capturing both global and fine-grained structural details to improve classification performance. To validate the effectiveness of our approach, we developed and evaluated three distinct model architectures: 1) a modified ResNet-50 model utilizing transfer learning with an adapted input pipeline for venation-aware channels; 2) a custom-built convolutional neural network, VenationNet, explicitly designed for multi-scale venation analysis; and 3) a Dual-Stream CNN architecture that processes leaf texture and venation maps independently before merging via attention-based fusion. Preprocessing involves contrast enhancement, Frangi filtering for venation extraction, and edge detection to create a three-channel input comprising RGB, venation, and edge maps. Experimental evaluation using the Indian Medicinal Plants Dataset demonstrates that our venation-centric strategy significantly outperforms traditional CNN-based approaches, achieving higher accuracy, precision, recall, and F1-scores across diverse plant categories. This research contributes a practical and scalable solution for reliable medicinal plant identification, which is crucial for pharmacological research, biodiversity monitoring, and traditional medicine practices. Moreover, our approach is well-suited for deployment in real-time mobile and edge computing environments.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"125526-125536\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080426\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080426/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11080426/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-Scale Venation Pattern Analysis for Medicinal Plant Species Recognition
This research addresses the challenge of medicinal plant species recognition based on leaf images by focusing on venation patterns as discriminative features. Venation patterns—defined by the hierarchical arrangement of veins within a leaf—carry significant taxonomic information that is often overlooked by conventional plant classification approaches. We propose a novel, venation-aware methodology that combines specialized image preprocessing techniques with both transfer learning and custom-designed deep learning architectures. Our method extracts and analyzes venation patterns at multiple spatial scales, capturing both global and fine-grained structural details to improve classification performance. To validate the effectiveness of our approach, we developed and evaluated three distinct model architectures: 1) a modified ResNet-50 model utilizing transfer learning with an adapted input pipeline for venation-aware channels; 2) a custom-built convolutional neural network, VenationNet, explicitly designed for multi-scale venation analysis; and 3) a Dual-Stream CNN architecture that processes leaf texture and venation maps independently before merging via attention-based fusion. Preprocessing involves contrast enhancement, Frangi filtering for venation extraction, and edge detection to create a three-channel input comprising RGB, venation, and edge maps. Experimental evaluation using the Indian Medicinal Plants Dataset demonstrates that our venation-centric strategy significantly outperforms traditional CNN-based approaches, achieving higher accuracy, precision, recall, and F1-scores across diverse plant categories. This research contributes a practical and scalable solution for reliable medicinal plant identification, which is crucial for pharmacological research, biodiversity monitoring, and traditional medicine practices. Moreover, our approach is well-suited for deployment in real-time mobile and edge computing environments.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.