凹凸规划:优化浅层神经网络的一种有效方法

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohammad Askarizadeh;Alireza Morsali;Sadegh Tofigh;Kim Khoa Nguyen
{"title":"凹凸规划:优化浅层神经网络的一种有效方法","authors":"Mohammad Askarizadeh;Alireza Morsali;Sadegh Tofigh;Kim Khoa Nguyen","doi":"10.1109/TETCI.2024.3502463","DOIUrl":null,"url":null,"abstract":"In this study, we address the challenges of non-convex optimization in neural networks (NNs) by formulating the training of multilayer perceptron (MLP) NNs as a difference of convex functions (DC) problem. Utilizing the basic convex–concave algorithm to solve our DC problems, we introduce two alternative optimization techniques, <italic>DC-GD</i> and <italic>DC-OPT</i>, for determining MLP parameters. By leveraging the non-uniqueness property of the convex components in DC functions, we generate strongly convex components for the DC NN cost function. This strong convexity enables our proposed algorithms, <italic>DC-GD</i> and <italic>DC-OPT</i>, to achieve an <italic>iteration complexity</i> of <inline-formula><tex-math>$O\\left(\\log \\left(\\frac{1}{\\varepsilon }\\right)\\right)$</tex-math></inline-formula>, surpassing that of other solvers, such as stochastic gradient descent (<italic>SGD</i>), which has an <italic>iteration complexity</i> of <inline-formula><tex-math>$O\\left(\\frac{1}{\\varepsilon }\\right)$</tex-math></inline-formula>. This improvement raises the convergence rate from sublinear (<italic>SGD</i>) to linear (ours) while maintaining comparable <italic>total computational costs</i>. Furthermore, conventional NN optimizers like <italic>SGD</i>, <italic>RMSprop</i>, and <italic>Adam</i> are highly sensitive to the learning rate, adding computational overhead for practitioners in selecting an appropriate learning rate. In contrast, our <italic>DC-OPT</i> algorithm is hyperparameter-free (i.e., it requires no learning rate), and our <italic>DC-GD</i> algorithm is less sensitive to the learning rate, offering comparable accuracy to other solvers. Additionally, we extend our approach to a convolutional NN architecture, demonstrating its applicability to modern NNs. We evaluate the performance of our proposed algorithms by comparing them to conventional optimizers such as <italic>SGD</i>, <italic>RMSprop</i>, and <italic>Adam</i> across various test cases. The results suggest that our approach is a viable alternative for optimizing shallow MLP NNs.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 4","pages":"2894-2907"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex-Concave Programming: An Effective Alternative for Optimizing Shallow Neural Networks\",\"authors\":\"Mohammad Askarizadeh;Alireza Morsali;Sadegh Tofigh;Kim Khoa Nguyen\",\"doi\":\"10.1109/TETCI.2024.3502463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we address the challenges of non-convex optimization in neural networks (NNs) by formulating the training of multilayer perceptron (MLP) NNs as a difference of convex functions (DC) problem. Utilizing the basic convex–concave algorithm to solve our DC problems, we introduce two alternative optimization techniques, <italic>DC-GD</i> and <italic>DC-OPT</i>, for determining MLP parameters. By leveraging the non-uniqueness property of the convex components in DC functions, we generate strongly convex components for the DC NN cost function. This strong convexity enables our proposed algorithms, <italic>DC-GD</i> and <italic>DC-OPT</i>, to achieve an <italic>iteration complexity</i> of <inline-formula><tex-math>$O\\\\left(\\\\log \\\\left(\\\\frac{1}{\\\\varepsilon }\\\\right)\\\\right)$</tex-math></inline-formula>, surpassing that of other solvers, such as stochastic gradient descent (<italic>SGD</i>), which has an <italic>iteration complexity</i> of <inline-formula><tex-math>$O\\\\left(\\\\frac{1}{\\\\varepsilon }\\\\right)$</tex-math></inline-formula>. This improvement raises the convergence rate from sublinear (<italic>SGD</i>) to linear (ours) while maintaining comparable <italic>total computational costs</i>. Furthermore, conventional NN optimizers like <italic>SGD</i>, <italic>RMSprop</i>, and <italic>Adam</i> are highly sensitive to the learning rate, adding computational overhead for practitioners in selecting an appropriate learning rate. In contrast, our <italic>DC-OPT</i> algorithm is hyperparameter-free (i.e., it requires no learning rate), and our <italic>DC-GD</i> algorithm is less sensitive to the learning rate, offering comparable accuracy to other solvers. Additionally, we extend our approach to a convolutional NN architecture, demonstrating its applicability to modern NNs. We evaluate the performance of our proposed algorithms by comparing them to conventional optimizers such as <italic>SGD</i>, <italic>RMSprop</i>, and <italic>Adam</i> across various test cases. The results suggest that our approach is a viable alternative for optimizing shallow MLP NNs.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 4\",\"pages\":\"2894-2907\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779190/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779190/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过将多层感知器(MLP) nn的训练表述为凸函数差分(DC)问题,解决了神经网络(nn)中非凸优化的挑战。利用基本的凹凸算法来解决我们的直流电问题,我们引入了两种可选的优化技术,DC- gd和DC- opt,以确定MLP参数。通过利用DC函数中凸分量的非唯一性,我们生成了DC神经网络代价函数的强凸分量。这种强凸性使得我们提出的DC-GD和DC-OPT算法的迭代复杂度为$O\left(\log \left(\frac{1}{\varepsilon }\right)\right)$,超过了其他求解器,如随机梯度下降(SGD),其迭代复杂度为$O\left(\frac{1}{\varepsilon }\right)$。这种改进提高了从次线性(SGD)到线性(ours)的收敛速度,同时保持相当的总计算成本。此外,传统的神经网络优化器,如SGD、RMSprop和Adam对学习率高度敏感,这增加了从业者选择适当学习率的计算开销。相比之下,我们的DC-OPT算法是无超参数的(即,它不需要学习率),我们的DC-GD算法对学习率不太敏感,提供了与其他求解器相当的精度。此外,我们将我们的方法扩展到卷积神经网络架构,展示其对现代神经网络的适用性。我们通过将我们提出的算法与传统的优化器(如SGD、RMSprop和Adam)在各种测试用例中进行比较来评估它们的性能。结果表明,我们的方法是优化浅层MLP神经网络的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex-Concave Programming: An Effective Alternative for Optimizing Shallow Neural Networks
In this study, we address the challenges of non-convex optimization in neural networks (NNs) by formulating the training of multilayer perceptron (MLP) NNs as a difference of convex functions (DC) problem. Utilizing the basic convex–concave algorithm to solve our DC problems, we introduce two alternative optimization techniques, DC-GD and DC-OPT, for determining MLP parameters. By leveraging the non-uniqueness property of the convex components in DC functions, we generate strongly convex components for the DC NN cost function. This strong convexity enables our proposed algorithms, DC-GD and DC-OPT, to achieve an iteration complexity of $O\left(\log \left(\frac{1}{\varepsilon }\right)\right)$, surpassing that of other solvers, such as stochastic gradient descent (SGD), which has an iteration complexity of $O\left(\frac{1}{\varepsilon }\right)$. This improvement raises the convergence rate from sublinear (SGD) to linear (ours) while maintaining comparable total computational costs. Furthermore, conventional NN optimizers like SGD, RMSprop, and Adam are highly sensitive to the learning rate, adding computational overhead for practitioners in selecting an appropriate learning rate. In contrast, our DC-OPT algorithm is hyperparameter-free (i.e., it requires no learning rate), and our DC-GD algorithm is less sensitive to the learning rate, offering comparable accuracy to other solvers. Additionally, we extend our approach to a convolutional NN architecture, demonstrating its applicability to modern NNs. We evaluate the performance of our proposed algorithms by comparing them to conventional optimizers such as SGD, RMSprop, and Adam across various test cases. The results suggest that our approach is a viable alternative for optimizing shallow MLP NNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信