{"title":"求解具有非光滑数据的回火次扩散方程的修正L1格式","authors":"Can Li , Xin Wang , Yubin Yan , Zexin Hou","doi":"10.1016/j.rinam.2025.100613","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100613"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A corrected L1 scheme for solving a tempered subdiffusion equation with nonsmooth data\",\"authors\":\"Can Li , Xin Wang , Yubin Yan , Zexin Hou\",\"doi\":\"10.1016/j.rinam.2025.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100613\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A corrected L1 scheme for solving a tempered subdiffusion equation with nonsmooth data
In this paper, we consider a time semi-discrete scheme for a tempered subdiffusion equation with nonsmooth data. Due to the low regularity of the solution, the optimal convergence rate cannot be achieved when the L1 time-stepping scheme is directly applied to discretize the tempered fractional derivative. By introducing a correction term at the initial time step, we propose a corrected L1 scheme which recover to the optimal convergence rate. Theoretical error estimates and numerical experiments validate the improvement.