一个带ComMAND的新框架:作者姓名消歧的组合方法

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Natan S. Rodrigues , Célia G. Ralha
{"title":"一个带ComMAND的新框架:作者姓名消歧的组合方法","authors":"Natan S. Rodrigues ,&nbsp;Célia G. Ralha","doi":"10.1016/j.ipm.2025.104304","DOIUrl":null,"url":null,"abstract":"<div><div>Author Name Disambiguation (AND) in digital bibliographic repositories is a persistent challenge due to homonyms and synonyms, compromising information retrieval and database integrity. This work presents a novel framework with a <strong>Com</strong>bined <strong>M</strong>ethod for <strong>A</strong>uthor <strong>N</strong>ame <strong>D</strong>isambiguation (ComMAND) that integrates transfer learning with SciBERT, Graph Convolutional Network (GCN), and Graph-enhanced Hierarchical Agglomerative Clustering (GHAC) to enhance AND performance. The framework includes a Graphical User Interface (GUI), allowing users to load datasets, execute AND tasks, and visualize results without requiring programming knowledge. By semantically analyzing document content and leveraging graph-based relationships, our approach achieves higher precision in identifying unique authors. Experimental results on AMiner-12, AMiner-18, and DBLP validate the effectiveness of the framework. Considering the DBLP dataset, which contains extensive ambiguous name references (679), the results show the highest F1 of 0.869 and K-metric of 0.972 compared to the baseline works, with improvements ranging from 1.1% to 33.6% over baseline works. These findings highlight the effectiveness of combining machine learning, graph-based techniques, and clustering for large-scale AND tasks.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104304"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework with ComMAND: A combined method for author name disambiguation\",\"authors\":\"Natan S. Rodrigues ,&nbsp;Célia G. Ralha\",\"doi\":\"10.1016/j.ipm.2025.104304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Author Name Disambiguation (AND) in digital bibliographic repositories is a persistent challenge due to homonyms and synonyms, compromising information retrieval and database integrity. This work presents a novel framework with a <strong>Com</strong>bined <strong>M</strong>ethod for <strong>A</strong>uthor <strong>N</strong>ame <strong>D</strong>isambiguation (ComMAND) that integrates transfer learning with SciBERT, Graph Convolutional Network (GCN), and Graph-enhanced Hierarchical Agglomerative Clustering (GHAC) to enhance AND performance. The framework includes a Graphical User Interface (GUI), allowing users to load datasets, execute AND tasks, and visualize results without requiring programming knowledge. By semantically analyzing document content and leveraging graph-based relationships, our approach achieves higher precision in identifying unique authors. Experimental results on AMiner-12, AMiner-18, and DBLP validate the effectiveness of the framework. Considering the DBLP dataset, which contains extensive ambiguous name references (679), the results show the highest F1 of 0.869 and K-metric of 0.972 compared to the baseline works, with improvements ranging from 1.1% to 33.6% over baseline works. These findings highlight the effectiveness of combining machine learning, graph-based techniques, and clustering for large-scale AND tasks.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104304\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002456\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002456","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于同音异义的存在,作者姓名消歧(AND)在数字书目存储库中是一个长期存在的挑战,影响了信息检索和数据库的完整性。本研究提出了一种新的作者姓名消歧(ComMAND)组合方法框架,该框架将迁移学习与SciBERT、图卷积网络(GCN)和图增强分层聚类(GHAC)相结合,以提高and性能。该框架包括一个图形用户界面(GUI),允许用户加载数据集,执行AND任务,并可视化结果,而不需要编程知识。通过对文档内容进行语义分析并利用基于图的关系,我们的方法在识别唯一作者方面达到了更高的精度。在AMiner-12、AMiner-18和DBLP上的实验结果验证了该框架的有效性。考虑到包含大量歧义名称引用(679)的DBLP数据集,结果显示与基线作品相比,最高的F1为0.869,K-metric为0.972,比基线作品提高了1.1%至33.6%。这些发现强调了将机器学习、基于图的技术和聚类相结合用于大规模and任务的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework with ComMAND: A combined method for author name disambiguation
Author Name Disambiguation (AND) in digital bibliographic repositories is a persistent challenge due to homonyms and synonyms, compromising information retrieval and database integrity. This work presents a novel framework with a Combined Method for Author Name Disambiguation (ComMAND) that integrates transfer learning with SciBERT, Graph Convolutional Network (GCN), and Graph-enhanced Hierarchical Agglomerative Clustering (GHAC) to enhance AND performance. The framework includes a Graphical User Interface (GUI), allowing users to load datasets, execute AND tasks, and visualize results without requiring programming knowledge. By semantically analyzing document content and leveraging graph-based relationships, our approach achieves higher precision in identifying unique authors. Experimental results on AMiner-12, AMiner-18, and DBLP validate the effectiveness of the framework. Considering the DBLP dataset, which contains extensive ambiguous name references (679), the results show the highest F1 of 0.869 and K-metric of 0.972 compared to the baseline works, with improvements ranging from 1.1% to 33.6% over baseline works. These findings highlight the effectiveness of combining machine learning, graph-based techniques, and clustering for large-scale AND tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信