MKE-PLLM:基于预训练大语言模型的多语言知识编辑基准

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ran Song , Shengxiang Gao , Xiaofei Gao , Cunli Mao , Zhengtao Yu
{"title":"MKE-PLLM:基于预训练大语言模型的多语言知识编辑基准","authors":"Ran Song ,&nbsp;Shengxiang Gao ,&nbsp;Xiaofei Gao ,&nbsp;Cunli Mao ,&nbsp;Zhengtao Yu","doi":"10.1016/j.neucom.2025.130979","DOIUrl":null,"url":null,"abstract":"<div><div>Multilingual large language models have demonstrated remarkable performance across various downstream tasks but are still plagued by factuality errors. Knowledge editing aims to correct these errors by modifying the internal knowledge of pre-trained models. However, current knowledge editing methods primarily focus on monolingual settings, neglecting the complexities and interdependencies within multilingual scenarios. Furthermore, benchmarks specifically designed for multilingual knowledge editing are relatively scarce. Addressing this gap, this paper constructs a novel multilingual knowledge editing benchmark. This benchmark comprehensively evaluates methods for mLLMs based on accuracy, reliability, generalization, and consistency. To ensure the robustness and usability of the benchmark, we conducted detailed analysis and validation. Concurrently, we propose a baseline method that adapts existing monolingual knowledge editing techniques to the multilingual environment. Extensive experimental results demonstrate the effectiveness of our constructed benchmark in evaluating multilingual knowledge editing.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130979"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MKE-PLLM: A benchmark for multilingual knowledge editing on pretrained large language model\",\"authors\":\"Ran Song ,&nbsp;Shengxiang Gao ,&nbsp;Xiaofei Gao ,&nbsp;Cunli Mao ,&nbsp;Zhengtao Yu\",\"doi\":\"10.1016/j.neucom.2025.130979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multilingual large language models have demonstrated remarkable performance across various downstream tasks but are still plagued by factuality errors. Knowledge editing aims to correct these errors by modifying the internal knowledge of pre-trained models. However, current knowledge editing methods primarily focus on monolingual settings, neglecting the complexities and interdependencies within multilingual scenarios. Furthermore, benchmarks specifically designed for multilingual knowledge editing are relatively scarce. Addressing this gap, this paper constructs a novel multilingual knowledge editing benchmark. This benchmark comprehensively evaluates methods for mLLMs based on accuracy, reliability, generalization, and consistency. To ensure the robustness and usability of the benchmark, we conducted detailed analysis and validation. Concurrently, we propose a baseline method that adapts existing monolingual knowledge editing techniques to the multilingual environment. Extensive experimental results demonstrate the effectiveness of our constructed benchmark in evaluating multilingual knowledge editing.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130979\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016510\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016510","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多语言大型语言模型在各种下游任务中表现出了卓越的性能,但仍然受到事实错误的困扰。知识编辑的目的是通过修改预训练模型的内部知识来纠正这些错误。然而,目前的知识编辑方法主要集中在单语言环境下,忽视了多语言环境下的复杂性和相互依赖性。此外,专门为多语言知识编辑设计的基准相对较少。为了解决这一问题,本文构建了一个新的多语言知识编辑基准。该基准综合评估了基于准确性、可靠性、泛化和一致性的mllm方法。为了确保基准的鲁棒性和可用性,我们进行了详细的分析和验证。同时,我们提出了一种基线方法,使现有的单语言知识编辑技术适应多语言环境。大量的实验结果证明了我们构建的基准在评估多语言知识编辑方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MKE-PLLM: A benchmark for multilingual knowledge editing on pretrained large language model
Multilingual large language models have demonstrated remarkable performance across various downstream tasks but are still plagued by factuality errors. Knowledge editing aims to correct these errors by modifying the internal knowledge of pre-trained models. However, current knowledge editing methods primarily focus on monolingual settings, neglecting the complexities and interdependencies within multilingual scenarios. Furthermore, benchmarks specifically designed for multilingual knowledge editing are relatively scarce. Addressing this gap, this paper constructs a novel multilingual knowledge editing benchmark. This benchmark comprehensively evaluates methods for mLLMs based on accuracy, reliability, generalization, and consistency. To ensure the robustness and usability of the benchmark, we conducted detailed analysis and validation. Concurrently, we propose a baseline method that adapts existing monolingual knowledge editing techniques to the multilingual environment. Extensive experimental results demonstrate the effectiveness of our constructed benchmark in evaluating multilingual knowledge editing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信