具有未知状态约束和非对称输入约束的离散时间非线性零和博弈的安全强化学习

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shihan Liu , Zhi Chen , Dongxu Gao
{"title":"具有未知状态约束和非对称输入约束的离散时间非线性零和博弈的安全强化学习","authors":"Shihan Liu ,&nbsp;Zhi Chen ,&nbsp;Dongxu Gao","doi":"10.1016/j.neucom.2025.131026","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel safe reinforcement learning (RL) algorithm for discrete-time nonlinear zero-sum games with unknown state constraints and asymmetric input constraints. To address this constrained optimal problem, we adopt a value iteration framework based on neural networks, incorporating a critic-only structure. Given the unknown safety constraints, we tackle the state constraint issue by introducing a neural network-based control barrier function (CBF) using collected data to augment the reward function. Furthermore, by leveraging the non-monotonic increasing property of the value function, we ensure the system’s safety. Additionally, we construct a non-quadratic function to further augment the reward function, thereby satisfying the asymmetric input constraints. This paper also includes a series of theoretical proofs that rigorously demonstrate the convergence and safety of the proposed algorithm. Finally, experiments conducted under different scenarios and parameter settings, compared with existing algorithms, validate the algorithm’s effectiveness and safety.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131026"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe reinforcement learning for discrete-time nonlinear zero-sum games with unknown state constraints and asymmetric input constraints\",\"authors\":\"Shihan Liu ,&nbsp;Zhi Chen ,&nbsp;Dongxu Gao\",\"doi\":\"10.1016/j.neucom.2025.131026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a novel safe reinforcement learning (RL) algorithm for discrete-time nonlinear zero-sum games with unknown state constraints and asymmetric input constraints. To address this constrained optimal problem, we adopt a value iteration framework based on neural networks, incorporating a critic-only structure. Given the unknown safety constraints, we tackle the state constraint issue by introducing a neural network-based control barrier function (CBF) using collected data to augment the reward function. Furthermore, by leveraging the non-monotonic increasing property of the value function, we ensure the system’s safety. Additionally, we construct a non-quadratic function to further augment the reward function, thereby satisfying the asymmetric input constraints. This paper also includes a series of theoretical proofs that rigorously demonstrate the convergence and safety of the proposed algorithm. Finally, experiments conducted under different scenarios and parameter settings, compared with existing algorithms, validate the algorithm’s effectiveness and safety.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 131026\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016984\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016984","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的安全强化学习(RL)算法,用于具有未知状态约束和非对称输入约束的离散非线性零和博弈。为了解决这个约束优化问题,我们采用了一个基于神经网络的值迭代框架,其中包含了一个仅限临界结构。考虑到未知的安全约束,我们通过引入基于神经网络的控制障碍函数(CBF)来解决状态约束问题,该控制障碍函数使用收集的数据来增强奖励函数。利用值函数的非单调递增性质,保证了系统的安全性。此外,我们构造了一个非二次函数来进一步扩大奖励函数,从而满足非对称输入约束。本文还包括一系列理论证明,严格证明了所提出算法的收敛性和安全性。最后,通过不同场景和参数设置下的实验,与现有算法进行对比,验证了算法的有效性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe reinforcement learning for discrete-time nonlinear zero-sum games with unknown state constraints and asymmetric input constraints
In this paper, we propose a novel safe reinforcement learning (RL) algorithm for discrete-time nonlinear zero-sum games with unknown state constraints and asymmetric input constraints. To address this constrained optimal problem, we adopt a value iteration framework based on neural networks, incorporating a critic-only structure. Given the unknown safety constraints, we tackle the state constraint issue by introducing a neural network-based control barrier function (CBF) using collected data to augment the reward function. Furthermore, by leveraging the non-monotonic increasing property of the value function, we ensure the system’s safety. Additionally, we construct a non-quadratic function to further augment the reward function, thereby satisfying the asymmetric input constraints. This paper also includes a series of theoretical proofs that rigorously demonstrate the convergence and safety of the proposed algorithm. Finally, experiments conducted under different scenarios and parameter settings, compared with existing algorithms, validate the algorithm’s effectiveness and safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信