状态变因子模型的筛估计

IF 4 3区 经济学 Q1 ECONOMICS
Liangjun Su , Sainan Jin , Xia Wang
{"title":"状态变因子模型的筛估计","authors":"Liangjun Su ,&nbsp;Sainan Jin ,&nbsp;Xia Wang","doi":"10.1016/j.jeconom.2025.106064","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a sieve approach to estimate state-varying factor models, where the factor loadings vary over specific state variables. Our methodology consists of a two-step estimation procedure for the parameters of interest. In the first step, we achieve preliminary consistent estimates of the factors and factor loadings via nuclear norm regularization (NNR). In the second step, we perform post-NNR iterative least squares estimations for the factors and factor loadings. We establish the asymptotic properties of these estimators. Based on the estimation theory, we propose a test for the null hypothesis of constant factor loadings and examine the asymptotic properties of the test statistic. Monte Carlo simulations demonstrate the favorable performance of the proposed estimation procedure and testing method in finite samples. An application to a U.S. macroeconomic dataset suggests potential state-dependency within the U.S. economy.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106064"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sieve estimation of state-varying factor models\",\"authors\":\"Liangjun Su ,&nbsp;Sainan Jin ,&nbsp;Xia Wang\",\"doi\":\"10.1016/j.jeconom.2025.106064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a sieve approach to estimate state-varying factor models, where the factor loadings vary over specific state variables. Our methodology consists of a two-step estimation procedure for the parameters of interest. In the first step, we achieve preliminary consistent estimates of the factors and factor loadings via nuclear norm regularization (NNR). In the second step, we perform post-NNR iterative least squares estimations for the factors and factor loadings. We establish the asymptotic properties of these estimators. Based on the estimation theory, we propose a test for the null hypothesis of constant factor loadings and examine the asymptotic properties of the test statistic. Monte Carlo simulations demonstrate the favorable performance of the proposed estimation procedure and testing method in finite samples. An application to a U.S. macroeconomic dataset suggests potential state-dependency within the U.S. economy.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"251 \",\"pages\":\"Article 106064\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625001186\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001186","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种筛选方法来估计状态变因子模型,其中因子负载随特定状态变量而变化。我们的方法包括对感兴趣的参数的两步估计程序。在第一步,我们通过核范数正则化(NNR)实现了因子和因子负荷的初步一致估计。在第二步中,我们对因子和因子负载执行后nnr迭代最小二乘估计。我们建立了这些估计量的渐近性质。在估计理论的基础上,提出了恒因子负荷零假设的检验,并检验了检验统计量的渐近性质。蒙特卡罗仿真证明了所提出的估计程序和测试方法在有限样本下的良好性能。对美国宏观经济数据集的应用表明,美国经济内部存在潜在的国家依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sieve estimation of state-varying factor models
In this paper, we propose a sieve approach to estimate state-varying factor models, where the factor loadings vary over specific state variables. Our methodology consists of a two-step estimation procedure for the parameters of interest. In the first step, we achieve preliminary consistent estimates of the factors and factor loadings via nuclear norm regularization (NNR). In the second step, we perform post-NNR iterative least squares estimations for the factors and factor loadings. We establish the asymptotic properties of these estimators. Based on the estimation theory, we propose a test for the null hypothesis of constant factor loadings and examine the asymptotic properties of the test statistic. Monte Carlo simulations demonstrate the favorable performance of the proposed estimation procedure and testing method in finite samples. An application to a U.S. macroeconomic dataset suggests potential state-dependency within the U.S. economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信