基于模糊actor-critic学习的离散非线性系统可解释控制与误差映射稳定性通知保证

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jingya Wang , Xiao Feng , Yongbin Yu , Xiangxiang Wang , Naoufel Werghi , Xinyi Han , Hanmei Zhou , Kaibo Shi , Shouming Zhong , Jingye Cai , Nyima Tashi
{"title":"基于模糊actor-critic学习的离散非线性系统可解释控制与误差映射稳定性通知保证","authors":"Jingya Wang ,&nbsp;Xiao Feng ,&nbsp;Yongbin Yu ,&nbsp;Xiangxiang Wang ,&nbsp;Naoufel Werghi ,&nbsp;Xinyi Han ,&nbsp;Hanmei Zhou ,&nbsp;Kaibo Shi ,&nbsp;Shouming Zhong ,&nbsp;Jingye Cai ,&nbsp;Nyima Tashi","doi":"10.1016/j.chaos.2025.116878","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the issues of fuzzy actor–critic learning architecture, including insufficient interpretability, lack of stability guarantee, and neglect of historical error information. A novel actor–critic learning architecture based on interval type-2 Takagi–Sugeno-Kang fuzzy neural networks (ISAC-IT2-TSK-FNN) is proposed, comprising an interpretable IT2-TSK fuzzy actor (IT2-TSK-FA) and a stability-informed IT2-TSK fuzzy critic (IT2-TSK-FC). In the structure learning of interpretable IT2-TSK-FA, this paper proposes a fuzzy set classification and aggregation method, which reduces the number of fuzzy rules and the complexity of the model. For parameter learning, a value function that concurrently considers control performance and interpretability is designed. To enhance the transparency of fuzzy set partitioning, this paper proposes an iteration-based adaptive learning rate adjustment method. In the parameter learning of stability-informed IT2-TSK-FC, the Lyapunov theorem is introduced. The constraint on the learning rate is derived based on the Lyapunov stability condition to ensure the stability of the control system. Additionally, a weighted historical error mapping method is proposed, which improves the sensitivity of stability-informed IT2-TSK-FC to error changes, enhancing the control strategy evaluation capability. Finally, an algorithm is designed to implement the learning process of the ISAC-IT2-TSK-FNN architecture, with simulation results validating its effectiveness and robustness in various control tasks and under conditions with noise and disturbance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116878"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy actor–critic learning-based interpretable control and stability-informed guarantee with error mapping for discrete-time nonlinear system\",\"authors\":\"Jingya Wang ,&nbsp;Xiao Feng ,&nbsp;Yongbin Yu ,&nbsp;Xiangxiang Wang ,&nbsp;Naoufel Werghi ,&nbsp;Xinyi Han ,&nbsp;Hanmei Zhou ,&nbsp;Kaibo Shi ,&nbsp;Shouming Zhong ,&nbsp;Jingye Cai ,&nbsp;Nyima Tashi\",\"doi\":\"10.1016/j.chaos.2025.116878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the issues of fuzzy actor–critic learning architecture, including insufficient interpretability, lack of stability guarantee, and neglect of historical error information. A novel actor–critic learning architecture based on interval type-2 Takagi–Sugeno-Kang fuzzy neural networks (ISAC-IT2-TSK-FNN) is proposed, comprising an interpretable IT2-TSK fuzzy actor (IT2-TSK-FA) and a stability-informed IT2-TSK fuzzy critic (IT2-TSK-FC). In the structure learning of interpretable IT2-TSK-FA, this paper proposes a fuzzy set classification and aggregation method, which reduces the number of fuzzy rules and the complexity of the model. For parameter learning, a value function that concurrently considers control performance and interpretability is designed. To enhance the transparency of fuzzy set partitioning, this paper proposes an iteration-based adaptive learning rate adjustment method. In the parameter learning of stability-informed IT2-TSK-FC, the Lyapunov theorem is introduced. The constraint on the learning rate is derived based on the Lyapunov stability condition to ensure the stability of the control system. Additionally, a weighted historical error mapping method is proposed, which improves the sensitivity of stability-informed IT2-TSK-FC to error changes, enhancing the control strategy evaluation capability. Finally, an algorithm is designed to implement the learning process of the ISAC-IT2-TSK-FNN architecture, with simulation results validating its effectiveness and robustness in various control tasks and under conditions with noise and disturbance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116878\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925008914\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925008914","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究模糊行为者-批评家学习体系结构存在的可解释性不足、缺乏稳定性保证、忽略历史错误信息等问题。提出了一种基于区间2型Takagi-Sugeno-Kang模糊神经网络(ISAC-IT2-TSK-FNN)的行动者-评论家学习架构,包括可解释的IT2-TSK模糊行动者(IT2-TSK- fa)和稳定性通知的IT2-TSK模糊评论家(IT2-TSK- fc)。在可解释IT2-TSK-FA的结构学习中,提出了一种模糊集分类聚合方法,减少了模糊规则的数量,降低了模型的复杂度。对于参数学习,设计了一个同时考虑控制性能和可解释性的值函数。为了提高模糊集划分的透明性,提出了一种基于迭代的自适应学习率调整方法。在稳定性通知IT2-TSK-FC的参数学习中,引入了李雅普诺夫定理。基于李雅普诺夫稳定条件,导出了对学习率的约束,以保证控制系统的稳定性。此外,提出了一种加权历史误差映射方法,提高了稳定通知IT2-TSK-FC对误差变化的敏感性,增强了控制策略评估能力。最后,设计了一种算法来实现ISAC-IT2-TSK-FNN体系结构的学习过程,仿真结果验证了该算法在各种控制任务以及噪声和干扰条件下的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy actor–critic learning-based interpretable control and stability-informed guarantee with error mapping for discrete-time nonlinear system
This paper focuses on the issues of fuzzy actor–critic learning architecture, including insufficient interpretability, lack of stability guarantee, and neglect of historical error information. A novel actor–critic learning architecture based on interval type-2 Takagi–Sugeno-Kang fuzzy neural networks (ISAC-IT2-TSK-FNN) is proposed, comprising an interpretable IT2-TSK fuzzy actor (IT2-TSK-FA) and a stability-informed IT2-TSK fuzzy critic (IT2-TSK-FC). In the structure learning of interpretable IT2-TSK-FA, this paper proposes a fuzzy set classification and aggregation method, which reduces the number of fuzzy rules and the complexity of the model. For parameter learning, a value function that concurrently considers control performance and interpretability is designed. To enhance the transparency of fuzzy set partitioning, this paper proposes an iteration-based adaptive learning rate adjustment method. In the parameter learning of stability-informed IT2-TSK-FC, the Lyapunov theorem is introduced. The constraint on the learning rate is derived based on the Lyapunov stability condition to ensure the stability of the control system. Additionally, a weighted historical error mapping method is proposed, which improves the sensitivity of stability-informed IT2-TSK-FC to error changes, enhancing the control strategy evaluation capability. Finally, an algorithm is designed to implement the learning process of the ISAC-IT2-TSK-FNN architecture, with simulation results validating its effectiveness and robustness in various control tasks and under conditions with noise and disturbance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信