基于自先验信息和自适应加权总变差的正交平移计算层析重建

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Chuandong Tan , Chao Long , Yarui Xi , Zhiting Chen , Xinxin Lin , Fenglin Liu , Yufang Cai , Liming Duan
{"title":"基于自先验信息和自适应加权总变差的正交平移计算层析重建","authors":"Chuandong Tan ,&nbsp;Chao Long ,&nbsp;Yarui Xi ,&nbsp;Zhiting Chen ,&nbsp;Xinxin Lin ,&nbsp;Fenglin Liu ,&nbsp;Yufang Cai ,&nbsp;Liming Duan","doi":"10.1016/j.displa.2025.103169","DOIUrl":null,"url":null,"abstract":"<div><div>Orthogonal translation computed laminography (OTCL) provides an effective non-destructive testing method for plate-like objects. Nevertheless, OTCL images suffer from aliasing artifacts due to the inherent incompleteness of projection data, negatively impacting flaw characterization, dimensional metrology, and failure analysis. To reveal the cause of aliasing artifacts, the three-dimensional frequency domain characteristics of OTCL are analyzed. We further propose a novel reconstruction algorithm to mitigate aliasing artifacts, termed self-prior information guidance and adaptive weight total variation constraint (SPIG-AwTV). The SPIG-AwTV comprises two components: a self-prior information guidance (SPIG) regularization term and an adaptive weighted total variation (AwTV) regularization term. Specifically, SPIG is derived from filtered backprojection reconstruction result via contour extraction and masking. The AwTV regularization term is tailored to the gradient features of OTCL images in different directions. Experimental results demonstrate that the SPIG-AwTV outperforms existing methods in suppressing aliasing artifacts, preserving edges, and achieving higher-quality OTCL images.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"90 ","pages":"Article 103169"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal translation computed laminography reconstruction based on self-prior information and adaptive weighted total variation\",\"authors\":\"Chuandong Tan ,&nbsp;Chao Long ,&nbsp;Yarui Xi ,&nbsp;Zhiting Chen ,&nbsp;Xinxin Lin ,&nbsp;Fenglin Liu ,&nbsp;Yufang Cai ,&nbsp;Liming Duan\",\"doi\":\"10.1016/j.displa.2025.103169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Orthogonal translation computed laminography (OTCL) provides an effective non-destructive testing method for plate-like objects. Nevertheless, OTCL images suffer from aliasing artifacts due to the inherent incompleteness of projection data, negatively impacting flaw characterization, dimensional metrology, and failure analysis. To reveal the cause of aliasing artifacts, the three-dimensional frequency domain characteristics of OTCL are analyzed. We further propose a novel reconstruction algorithm to mitigate aliasing artifacts, termed self-prior information guidance and adaptive weight total variation constraint (SPIG-AwTV). The SPIG-AwTV comprises two components: a self-prior information guidance (SPIG) regularization term and an adaptive weighted total variation (AwTV) regularization term. Specifically, SPIG is derived from filtered backprojection reconstruction result via contour extraction and masking. The AwTV regularization term is tailored to the gradient features of OTCL images in different directions. Experimental results demonstrate that the SPIG-AwTV outperforms existing methods in suppressing aliasing artifacts, preserving edges, and achieving higher-quality OTCL images.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"90 \",\"pages\":\"Article 103169\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225002069\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002069","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

正交平移计算机层析成像(OTCL)为板状物体的无损检测提供了有效的方法。然而,由于投影数据固有的不完整性,OTCL图像受到混叠的影响,对缺陷表征、尺寸测量和故障分析产生负面影响。为了揭示混叠伪影产生的原因,分析了OTCL的三维频域特性。我们进一步提出了一种新的重建算法来减轻混叠伪像,称为自先验信息引导和自适应权重总变差约束(spigg - awtv)。SPIG-AwTV由自先验信息引导(SPIG)正则化项和自适应加权总变差(AwTV)正则化项两部分组成。具体来说,SPIG是通过轮廓提取和掩蔽过滤后的反向投影重建结果得到的。AwTV正则化项根据OTCL图像在不同方向上的梯度特征进行定制。实验结果表明,SPIG-AwTV在抑制混叠伪影、保留边缘和获得更高质量的OTCL图像方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal translation computed laminography reconstruction based on self-prior information and adaptive weighted total variation
Orthogonal translation computed laminography (OTCL) provides an effective non-destructive testing method for plate-like objects. Nevertheless, OTCL images suffer from aliasing artifacts due to the inherent incompleteness of projection data, negatively impacting flaw characterization, dimensional metrology, and failure analysis. To reveal the cause of aliasing artifacts, the three-dimensional frequency domain characteristics of OTCL are analyzed. We further propose a novel reconstruction algorithm to mitigate aliasing artifacts, termed self-prior information guidance and adaptive weight total variation constraint (SPIG-AwTV). The SPIG-AwTV comprises two components: a self-prior information guidance (SPIG) regularization term and an adaptive weighted total variation (AwTV) regularization term. Specifically, SPIG is derived from filtered backprojection reconstruction result via contour extraction and masking. The AwTV regularization term is tailored to the gradient features of OTCL images in different directions. Experimental results demonstrate that the SPIG-AwTV outperforms existing methods in suppressing aliasing artifacts, preserving edges, and achieving higher-quality OTCL images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信