具有消失伪拟共形曲率张量的拟sasaki流形

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-18 DOI:10.1016/j.mex.2025.103512
Farah Hasan AlHusseini , Habeeb M. Abood
{"title":"具有消失伪拟共形曲率张量的拟sasaki流形","authors":"Farah Hasan AlHusseini ,&nbsp;Habeeb M. Abood","doi":"10.1016/j.mex.2025.103512","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (<span><math><mtext>QS</mtext></math></span>-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (<span><math><mtext>PQC</mtext></math></span>-curvature tensor) of <span><math><mtext>QS</mtext></math></span>-manifold has been identified. The components of the <span><math><mtext>PQC</mtext></math></span>-curvature tensor are established employing the <span><math><mi>G</mi></math></span>-adjoined structure space(<span><math><mtext>GADS</mtext></math></span>-space). It is demonstrated that the Ricci flat <span><math><mtext>QS</mtext></math></span>-manifold is locally equivalent to the product of the complex Euclidean space <span><math><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup></math></span> and the real line. Furthermore, it has been demonstrated that a <span><math><mi>ξ</mi></math></span>-pseudo quasi conformal flat <span><math><mtext>QS</mtext></math></span>-manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric <span><math><mtext>QS</mtext></math></span>-manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for <span><math><mtext>QS</mtext></math></span>-manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.<ul><li><span>•</span><span><div>The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.</div></span></li><li><span>•</span><span><div>The Ricci flat quasi Sasakian manifold is<span><math><mspace></mspace></math></span>studied.</div></span></li><li><span>•</span><span><div>An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103512"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi Sasakian manifold endowed with vanishing pseudo quasi conformal curvature tensor\",\"authors\":\"Farah Hasan AlHusseini ,&nbsp;Habeeb M. Abood\",\"doi\":\"10.1016/j.mex.2025.103512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (<span><math><mtext>QS</mtext></math></span>-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (<span><math><mtext>PQC</mtext></math></span>-curvature tensor) of <span><math><mtext>QS</mtext></math></span>-manifold has been identified. The components of the <span><math><mtext>PQC</mtext></math></span>-curvature tensor are established employing the <span><math><mi>G</mi></math></span>-adjoined structure space(<span><math><mtext>GADS</mtext></math></span>-space). It is demonstrated that the Ricci flat <span><math><mtext>QS</mtext></math></span>-manifold is locally equivalent to the product of the complex Euclidean space <span><math><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup></math></span> and the real line. Furthermore, it has been demonstrated that a <span><math><mi>ξ</mi></math></span>-pseudo quasi conformal flat <span><math><mtext>QS</mtext></math></span>-manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric <span><math><mtext>QS</mtext></math></span>-manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for <span><math><mtext>QS</mtext></math></span>-manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.<ul><li><span>•</span><span><div>The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.</div></span></li><li><span>•</span><span><div>The Ricci flat quasi Sasakian manifold is<span><math><mspace></mspace></math></span>studied.</div></span></li><li><span>•</span><span><div>An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103512\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提供了对拟sasaki流形(qs流形)几何结构的基本理解,突出了它们的结构特性并增强了它们的几何框架知识。确定了qs流形的伪拟共形曲率张量(pqc -曲率张量)。利用g -共轭结构空间(gads)建立了pqc曲率张量的分量。证明了Ricci平面qs流形局部等价于复欧几里德空间Cn与实直线的乘积。进一步证明了一个ξ-伪拟共形平面qs流形是一个拟爱因斯坦流形。给出了拟对称qs流形成为拟爱因斯坦流形的条件。随后,证明了qs流形的伪拟共形对称与伪拟共形平坦是等价的。•确定了拟sasaki流形的拟拟共形曲率张量。•研究了Ricci平面拟sasaki流形。•给出了拟对称拟Sasakian流形作为拟爱因斯坦流形的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasi Sasakian manifold endowed with vanishing pseudo quasi conformal curvature tensor

Quasi Sasakian manifold endowed with vanishing pseudo quasi conformal curvature tensor
This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (QS-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (PQC-curvature tensor) of QS-manifold has been identified. The components of the PQC-curvature tensor are established employing the G-adjoined structure space(GADS-space). It is demonstrated that the Ricci flat QS-manifold is locally equivalent to the product of the complex Euclidean space Cn and the real line. Furthermore, it has been demonstrated that a ξ-pseudo quasi conformal flat QS-manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric QS-manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for QS-manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.
  • The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.
  • The Ricci flat quasi Sasakian manifold isstudied.
  • An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信