{"title":"具有消失伪拟共形曲率张量的拟sasaki流形","authors":"Farah Hasan AlHusseini , Habeeb M. Abood","doi":"10.1016/j.mex.2025.103512","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (<span><math><mtext>QS</mtext></math></span>-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (<span><math><mtext>PQC</mtext></math></span>-curvature tensor) of <span><math><mtext>QS</mtext></math></span>-manifold has been identified. The components of the <span><math><mtext>PQC</mtext></math></span>-curvature tensor are established employing the <span><math><mi>G</mi></math></span>-adjoined structure space(<span><math><mtext>GADS</mtext></math></span>-space). It is demonstrated that the Ricci flat <span><math><mtext>QS</mtext></math></span>-manifold is locally equivalent to the product of the complex Euclidean space <span><math><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup></math></span> and the real line. Furthermore, it has been demonstrated that a <span><math><mi>ξ</mi></math></span>-pseudo quasi conformal flat <span><math><mtext>QS</mtext></math></span>-manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric <span><math><mtext>QS</mtext></math></span>-manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for <span><math><mtext>QS</mtext></math></span>-manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.<ul><li><span>•</span><span><div>The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.</div></span></li><li><span>•</span><span><div>The Ricci flat quasi Sasakian manifold is<span><math><mspace></mspace></math></span>studied.</div></span></li><li><span>•</span><span><div>An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103512"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi Sasakian manifold endowed with vanishing pseudo quasi conformal curvature tensor\",\"authors\":\"Farah Hasan AlHusseini , Habeeb M. Abood\",\"doi\":\"10.1016/j.mex.2025.103512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (<span><math><mtext>QS</mtext></math></span>-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (<span><math><mtext>PQC</mtext></math></span>-curvature tensor) of <span><math><mtext>QS</mtext></math></span>-manifold has been identified. The components of the <span><math><mtext>PQC</mtext></math></span>-curvature tensor are established employing the <span><math><mi>G</mi></math></span>-adjoined structure space(<span><math><mtext>GADS</mtext></math></span>-space). It is demonstrated that the Ricci flat <span><math><mtext>QS</mtext></math></span>-manifold is locally equivalent to the product of the complex Euclidean space <span><math><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup></math></span> and the real line. Furthermore, it has been demonstrated that a <span><math><mi>ξ</mi></math></span>-pseudo quasi conformal flat <span><math><mtext>QS</mtext></math></span>-manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric <span><math><mtext>QS</mtext></math></span>-manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for <span><math><mtext>QS</mtext></math></span>-manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.<ul><li><span>•</span><span><div>The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.</div></span></li><li><span>•</span><span><div>The Ricci flat quasi Sasakian manifold is<span><math><mspace></mspace></math></span>studied.</div></span></li><li><span>•</span><span><div>An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103512\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quasi Sasakian manifold endowed with vanishing pseudo quasi conformal curvature tensor
This study provides a fundamental understanding of the geometry of a quasi-Sasakian manifold (-manifold), highlighting their structural properties and enhancing the knowledge of their geometric framework. A pseudo quasi-conformal curvature tensor (-curvature tensor) of -manifold has been identified. The components of the -curvature tensor are established employing the -adjoined structure space(-space). It is demonstrated that the Ricci flat -manifold is locally equivalent to the product of the complex Euclidean space and the real line. Furthermore, it has been demonstrated that a -pseudo quasi conformal flat -manifold is a quasi-Einstein manifold. The conditions under which a quasi-symmetric -manifold becomes a quasi-Einstein manifold are also specified. Subsequently, it has been shown for -manifolds that pseudo quasi conformal symmetric and pseudo quasi conformal flat are equivalent.
•
The pseudo quasi-conformal curvature tensor of the quasi Sasakian manifold has been identified.
•
The Ricci flat quasi Sasakian manifold isstudied.
•
An application of the quasi-symmetric quasi Sasakian manifold to be a quasi-Einstein manifold is specified.