Adrian Francalanza , Gerard Tabone , Frank Pfenning
{"title":"Grits:一种基于半公理序列演算的消息传递编程语言","authors":"Adrian Francalanza , Gerard Tabone , Frank Pfenning","doi":"10.1016/j.scico.2025.103360","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces <span>Grits</span>, a channel-based message-passing concurrent language based on the semi-axiomatic sequent calculus, a logical foundation underpinning intuitionistic session types. The language leverages modalities from adjoint logic to express a number of programming idioms such as broadcast communication and message cancellation. The <span>Grits</span> interpreter is developed using Go, and consists primarily of two components: a type-checker and an evaluator.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"248 ","pages":"Article 103360"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grits: A message-passing programming language based on the semi-axiomatic sequent calculus\",\"authors\":\"Adrian Francalanza , Gerard Tabone , Frank Pfenning\",\"doi\":\"10.1016/j.scico.2025.103360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces <span>Grits</span>, a channel-based message-passing concurrent language based on the semi-axiomatic sequent calculus, a logical foundation underpinning intuitionistic session types. The language leverages modalities from adjoint logic to express a number of programming idioms such as broadcast communication and message cancellation. The <span>Grits</span> interpreter is developed using Go, and consists primarily of two components: a type-checker and an evaluator.</div></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"248 \",\"pages\":\"Article 103360\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642325000991\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000991","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Grits: A message-passing programming language based on the semi-axiomatic sequent calculus
This paper introduces Grits, a channel-based message-passing concurrent language based on the semi-axiomatic sequent calculus, a logical foundation underpinning intuitionistic session types. The language leverages modalities from adjoint logic to express a number of programming idioms such as broadcast communication and message cancellation. The Grits interpreter is developed using Go, and consists primarily of two components: a type-checker and an evaluator.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.