Alessandro Sebastian Podda , Riccardo Balia , Marco Manolo Manca , Jacopo Martellucci , Livio Pompianu
{"title":"基于超声图像的结直肠肿瘤三维分割的深度学习策略","authors":"Alessandro Sebastian Podda , Riccardo Balia , Marco Manolo Manca , Jacopo Martellucci , Livio Pompianu","doi":"10.1016/j.imavis.2025.105668","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer remains a leading cause of cancer-related mortality worldwide, highlighting the need for accurate and efficient diagnostic tools. While Deep Learning has shown promise in medical imaging, its application to transrectal ultrasound for colorectal tumor segmentation remains underexplored. Currently, lesion segmentation is performed manually, relying on clinician expertise and leading to significant variability across treatment centers. To overcome this limitations, we propose a novel strategy that addresses both practical challenges and technical constraints, particularly in scenarios with limited data availability, offering a robust framework for accurate 3D colorectal tumor segmentation from ultrasound imaging. We evaluate eight state-of-the-art models, including convolutional neural networks and transformer-based architectures, and introduce domain-tailored pre- and post-processing techniques such as data augmentation, patching and ensembling to enhance segmentation performance while reducing computational cost. Leading to an average improvement in term of DICE score of 0.423 absolute points (+107%), compared to baseline models, our findings demonstrate the potential of our proposal to improve the accuracy and reliability of ultrasound-based diagnostics for colorectal cancer, paving the way for clinically viable AI-driven solutions.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"162 ","pages":"Article 105668"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning strategy for the 3D segmentation of colorectal tumors from ultrasound imaging\",\"authors\":\"Alessandro Sebastian Podda , Riccardo Balia , Marco Manolo Manca , Jacopo Martellucci , Livio Pompianu\",\"doi\":\"10.1016/j.imavis.2025.105668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Colorectal cancer remains a leading cause of cancer-related mortality worldwide, highlighting the need for accurate and efficient diagnostic tools. While Deep Learning has shown promise in medical imaging, its application to transrectal ultrasound for colorectal tumor segmentation remains underexplored. Currently, lesion segmentation is performed manually, relying on clinician expertise and leading to significant variability across treatment centers. To overcome this limitations, we propose a novel strategy that addresses both practical challenges and technical constraints, particularly in scenarios with limited data availability, offering a robust framework for accurate 3D colorectal tumor segmentation from ultrasound imaging. We evaluate eight state-of-the-art models, including convolutional neural networks and transformer-based architectures, and introduce domain-tailored pre- and post-processing techniques such as data augmentation, patching and ensembling to enhance segmentation performance while reducing computational cost. Leading to an average improvement in term of DICE score of 0.423 absolute points (+107%), compared to baseline models, our findings demonstrate the potential of our proposal to improve the accuracy and reliability of ultrasound-based diagnostics for colorectal cancer, paving the way for clinically viable AI-driven solutions.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"162 \",\"pages\":\"Article 105668\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625002562\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625002562","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A deep learning strategy for the 3D segmentation of colorectal tumors from ultrasound imaging
Colorectal cancer remains a leading cause of cancer-related mortality worldwide, highlighting the need for accurate and efficient diagnostic tools. While Deep Learning has shown promise in medical imaging, its application to transrectal ultrasound for colorectal tumor segmentation remains underexplored. Currently, lesion segmentation is performed manually, relying on clinician expertise and leading to significant variability across treatment centers. To overcome this limitations, we propose a novel strategy that addresses both practical challenges and technical constraints, particularly in scenarios with limited data availability, offering a robust framework for accurate 3D colorectal tumor segmentation from ultrasound imaging. We evaluate eight state-of-the-art models, including convolutional neural networks and transformer-based architectures, and introduce domain-tailored pre- and post-processing techniques such as data augmentation, patching and ensembling to enhance segmentation performance while reducing computational cost. Leading to an average improvement in term of DICE score of 0.423 absolute points (+107%), compared to baseline models, our findings demonstrate the potential of our proposal to improve the accuracy and reliability of ultrasound-based diagnostics for colorectal cancer, paving the way for clinically viable AI-driven solutions.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.