潜在低秩张量轮分解视觉数据补全

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yihao Luo , Yuning Qiu , Peilin Yang , Hongxia Rao , Zhenhao Huang , Guoxu Zhou
{"title":"潜在低秩张量轮分解视觉数据补全","authors":"Yihao Luo ,&nbsp;Yuning Qiu ,&nbsp;Peilin Yang ,&nbsp;Hongxia Rao ,&nbsp;Zhenhao Huang ,&nbsp;Guoxu Zhou","doi":"10.1016/j.neucom.2025.130889","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, tensor wheel (TW) decomposition gains increasing attention in the area of low-rank tensor completion (LRTC). Existing tensor factorization-based methods can either capture the global connections among all dimension-pairs of data or the local connections between adjacent modes only via low-rank regularization. In this paper, we propose a novel TW decomposition with latent low-rank factors, where the low-rank regularizations are incorporated in the gradient domain of ring factors to enhance the robustness of TW-ranks. Thus, the global low-rank structure of TW decomposition and local continuity of high-order tensors can be exploited in a unified framework. Additionally, an efficient alternating direction method of multipliers (ADMM) algorithm is developed to solve the optimization. Experimental results on real-world visual data such as color images, multispectral images (MSI), and video sequences have showcased the superiority of the proposed method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130889"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent low-rank tensor wheel decomposition for visual data completion\",\"authors\":\"Yihao Luo ,&nbsp;Yuning Qiu ,&nbsp;Peilin Yang ,&nbsp;Hongxia Rao ,&nbsp;Zhenhao Huang ,&nbsp;Guoxu Zhou\",\"doi\":\"10.1016/j.neucom.2025.130889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, tensor wheel (TW) decomposition gains increasing attention in the area of low-rank tensor completion (LRTC). Existing tensor factorization-based methods can either capture the global connections among all dimension-pairs of data or the local connections between adjacent modes only via low-rank regularization. In this paper, we propose a novel TW decomposition with latent low-rank factors, where the low-rank regularizations are incorporated in the gradient domain of ring factors to enhance the robustness of TW-ranks. Thus, the global low-rank structure of TW decomposition and local continuity of high-order tensors can be exploited in a unified framework. Additionally, an efficient alternating direction method of multipliers (ADMM) algorithm is developed to solve the optimization. Experimental results on real-world visual data such as color images, multispectral images (MSI), and video sequences have showcased the superiority of the proposed method.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130889\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225015619\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015619","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,张量轮分解(TW)在低秩张量补全(LRTC)领域受到越来越多的关注。现有的基于张量分解的方法要么捕获所有维度对数据之间的全局连接,要么仅通过低秩正则化捕获相邻模式之间的局部连接。在本文中,我们提出了一种新的含有潜在低秩因子的TW分解方法,该方法将低秩正则化纳入环因子的梯度域,以增强TW秩的鲁棒性。因此,TW分解的全局低秩结构和高阶张量的局部连续性可以在一个统一的框架中得到利用。在此基础上,提出了一种高效的交替方向乘法器(ADMM)算法。在彩色图像、多光谱图像和视频序列等实际视觉数据上的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent low-rank tensor wheel decomposition for visual data completion
Recently, tensor wheel (TW) decomposition gains increasing attention in the area of low-rank tensor completion (LRTC). Existing tensor factorization-based methods can either capture the global connections among all dimension-pairs of data or the local connections between adjacent modes only via low-rank regularization. In this paper, we propose a novel TW decomposition with latent low-rank factors, where the low-rank regularizations are incorporated in the gradient domain of ring factors to enhance the robustness of TW-ranks. Thus, the global low-rank structure of TW decomposition and local continuity of high-order tensors can be exploited in a unified framework. Additionally, an efficient alternating direction method of multipliers (ADMM) algorithm is developed to solve the optimization. Experimental results on real-world visual data such as color images, multispectral images (MSI), and video sequences have showcased the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信