通过TextGINConv和Kolmogorov-Arnold网络增强句法和语义特征,用于基于方面的情感分析

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoru Li, Yuxia Lei
{"title":"通过TextGINConv和Kolmogorov-Arnold网络增强句法和语义特征,用于基于方面的情感分析","authors":"Xiaoru Li,&nbsp;Yuxia Lei","doi":"10.1016/j.neucom.2025.131037","DOIUrl":null,"url":null,"abstract":"<div><div>Aspect-based sentiment analysis identifies the sentiment polarity of a given aspect in a sentence. Recent advances have demonstrated the effectiveness of combining syntactic dependency structures with graph convolutional networks. However, traditional graph convolutional networks usually have a simpler message passing mechanism that may describe the relationship between nodes only through the adjacency matrix, often ignoring messages passed by edge features and performing sentiment analysis without considering the specific semantic information of different aspects. In this paper, we innovatively propose a syntactic and semantic enhancement network model for aspect-based sentiment analysis (ESSGKA). To be specific, we combine a self-attention mechanism with an aspect-oriented attention mechanism, enabling the simultaneous learning of aspect-related semantics and the overall semantics of the sentence. TextGINConv focuses more on edge features, which are leveraged to facilitate dense message passing. To enhance the fusion of two distinct feature messages, we propose a novel gated fusion framework based on Kolmogorov–Arnold networks. Extensive experiments on four publicly available datasets show that our model is more competitive than state-of-the-art models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131037"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing syntactic and semantic features via TextGINConv and Kolmogorov–Arnold networks for aspect-based sentiment analysis\",\"authors\":\"Xiaoru Li,&nbsp;Yuxia Lei\",\"doi\":\"10.1016/j.neucom.2025.131037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aspect-based sentiment analysis identifies the sentiment polarity of a given aspect in a sentence. Recent advances have demonstrated the effectiveness of combining syntactic dependency structures with graph convolutional networks. However, traditional graph convolutional networks usually have a simpler message passing mechanism that may describe the relationship between nodes only through the adjacency matrix, often ignoring messages passed by edge features and performing sentiment analysis without considering the specific semantic information of different aspects. In this paper, we innovatively propose a syntactic and semantic enhancement network model for aspect-based sentiment analysis (ESSGKA). To be specific, we combine a self-attention mechanism with an aspect-oriented attention mechanism, enabling the simultaneous learning of aspect-related semantics and the overall semantics of the sentence. TextGINConv focuses more on edge features, which are leveraged to facilitate dense message passing. To enhance the fusion of two distinct feature messages, we propose a novel gated fusion framework based on Kolmogorov–Arnold networks. Extensive experiments on four publicly available datasets show that our model is more competitive than state-of-the-art models.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 131037\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225017096\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225017096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于方面的情感分析识别句子中给定方面的情感极性。最近的进展已经证明了将句法依赖结构与图卷积网络相结合的有效性。然而,传统的图卷积网络通常具有更简单的消息传递机制,可能仅通过邻接矩阵来描述节点之间的关系,往往忽略了边缘特征传递的消息,并进行情感分析,而不考虑不同方面的具体语义信息。在本文中,我们创新地提出了一种基于方面的情感分析(ESSGKA)的语法和语义增强网络模型。具体而言,我们将自我注意机制与面向方面的注意机制相结合,实现了面向方面语义和句子整体语义的同步学习。TextGINConv更多地关注边缘特性,利用这些特性来促进密集的消息传递。为了增强两个不同特征信息的融合,我们提出了一种基于Kolmogorov-Arnold网络的门控融合框架。在四个公开数据集上进行的大量实验表明,我们的模型比最先进的模型更具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing syntactic and semantic features via TextGINConv and Kolmogorov–Arnold networks for aspect-based sentiment analysis
Aspect-based sentiment analysis identifies the sentiment polarity of a given aspect in a sentence. Recent advances have demonstrated the effectiveness of combining syntactic dependency structures with graph convolutional networks. However, traditional graph convolutional networks usually have a simpler message passing mechanism that may describe the relationship between nodes only through the adjacency matrix, often ignoring messages passed by edge features and performing sentiment analysis without considering the specific semantic information of different aspects. In this paper, we innovatively propose a syntactic and semantic enhancement network model for aspect-based sentiment analysis (ESSGKA). To be specific, we combine a self-attention mechanism with an aspect-oriented attention mechanism, enabling the simultaneous learning of aspect-related semantics and the overall semantics of the sentence. TextGINConv focuses more on edge features, which are leveraged to facilitate dense message passing. To enhance the fusion of two distinct feature messages, we propose a novel gated fusion framework based on Kolmogorov–Arnold networks. Extensive experiments on four publicly available datasets show that our model is more competitive than state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信