用张量网络和信息完备的测量对许多可观测值进行低方差估计

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-23 DOI:10.22331/q-2025-07-23-1812
Stefano Mangini, Daniel Cavalcanti
{"title":"用张量网络和信息完备的测量对许多可观测值进行低方差估计","authors":"Stefano Mangini, Daniel Cavalcanti","doi":"10.22331/q-2025-07-23-1812","DOIUrl":null,"url":null,"abstract":"Accurately estimating the properties of quantum systems is a central challenge in quantum computing and quantum information. We propose a method to obtain unbiased estimators of multiple observables with low statistical error by post-processing informationally complete measurements using tensor networks. Compared to other observable estimation protocols based on classical shadows and measurement frames, our approach offers several advantages: (i) it can be optimised to provide lower statistical error, resulting in a reduced measurement budget to achieve a specified estimation precision; (ii) it scales to a large number of qubits due to the tensor network structure; (iii) it can be applied to any measurement protocol with measurement operators that have an efficient tensor-network representation. We benchmark the method through various numerical examples, including spin and chemical systems, and show that our method can provide statistical error that are orders of magnitude lower than the ones given by classical shadows.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"143 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low variance estimations of many observables with tensor networks and informationally-complete measurements\",\"authors\":\"Stefano Mangini, Daniel Cavalcanti\",\"doi\":\"10.22331/q-2025-07-23-1812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately estimating the properties of quantum systems is a central challenge in quantum computing and quantum information. We propose a method to obtain unbiased estimators of multiple observables with low statistical error by post-processing informationally complete measurements using tensor networks. Compared to other observable estimation protocols based on classical shadows and measurement frames, our approach offers several advantages: (i) it can be optimised to provide lower statistical error, resulting in a reduced measurement budget to achieve a specified estimation precision; (ii) it scales to a large number of qubits due to the tensor network structure; (iii) it can be applied to any measurement protocol with measurement operators that have an efficient tensor-network representation. We benchmark the method through various numerical examples, including spin and chemical systems, and show that our method can provide statistical error that are orders of magnitude lower than the ones given by classical shadows.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-23-1812\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-23-1812","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确估计量子系统的性质是量子计算和量子信息的核心挑战。我们提出了一种利用张量网络对信息完备的测量数据进行后处理,从而获得具有低统计误差的多观测值的无偏估计量的方法。与其他基于经典阴影和测量帧的可观测估计协议相比,我们的方法具有以下优点:(i)可以优化以提供更低的统计误差,从而减少测量预算以达到指定的估计精度;(ii)由于张量网络结构,可扩展到大量量子位;(iii)它可以应用于任何具有有效张量网络表示的测量算子的测量协议。我们通过各种数值例子对该方法进行了基准测试,包括自旋和化学系统,并表明我们的方法可以提供比经典阴影给出的统计误差低几个数量级的统计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low variance estimations of many observables with tensor networks and informationally-complete measurements
Accurately estimating the properties of quantum systems is a central challenge in quantum computing and quantum information. We propose a method to obtain unbiased estimators of multiple observables with low statistical error by post-processing informationally complete measurements using tensor networks. Compared to other observable estimation protocols based on classical shadows and measurement frames, our approach offers several advantages: (i) it can be optimised to provide lower statistical error, resulting in a reduced measurement budget to achieve a specified estimation precision; (ii) it scales to a large number of qubits due to the tensor network structure; (iii) it can be applied to any measurement protocol with measurement operators that have an efficient tensor-network representation. We benchmark the method through various numerical examples, including spin and chemical systems, and show that our method can provide statistical error that are orders of magnitude lower than the ones given by classical shadows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信