{"title":"金属-芳烃相互作用下nnn -钳形铀支架的C−C键切割和羰基化","authors":"Yue Pang, Thayalan Rajeshkumar, Rosario Scopelliti, Laurent Maron, Marinella Mazzanti","doi":"10.1039/d5sc04248h","DOIUrl":null,"url":null,"abstract":"Metal-arene complexes have recently attracted an increasing interest in f-element chemistry, but the functionalization of arenes mediated by uranium-arene interactions is limited to a single example. Here, we report a new uranium-biphenylene complex supported by a bulky rigid trianionic NNN-pincer ligand in which the uranium-arene interaction is able to promote C−C bond cleavage and functionalization with CO under mild conditions to yield a U-bound 9-fluorenone. Reduction of the U(IV)-pincer complex [NNN-U(THF)Cl2K(THF)3]2 (1) with KC8, in the presence of biphenylene, results in the terminal arene complex [NNN-U(THF)(biphenylene)][K(THF)5] (3). DFT studies of 3 indicate the presence of two unpaired electrons located at the uranium center, in line with a U(IV) and a biphenylene dianion. Complex 3 undergoes Caryl−Caryl bond cleavage of the biphenylene ligand, affording [NNN-U(THF)(2,2'-biphenyl)][K(THF)2] (4). DFT studies indicated that, due to the interaction between the biphenylene dianion and the uranium, a concerted ring opening reaction can occur on the strained four members ring to yield 4 while the uranium center retains a +IV oxidation state. Complex 4 undergoes facile CO insertion into the U−Caryl bond, followed by the Caryl−Ccarbonyl bond formation, yielding [NNN-U(THF)2(fluorenone)][K(THF)4] (5). This work demonstrates the potentials of uranium-arene interactions to promote arene activation and functionalization","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"53 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C−C Bond Cleavage and Carbonylation Enabled by an NNN-Pincer Uranium Scaffold via Metal-Arene Interaction\",\"authors\":\"Yue Pang, Thayalan Rajeshkumar, Rosario Scopelliti, Laurent Maron, Marinella Mazzanti\",\"doi\":\"10.1039/d5sc04248h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-arene complexes have recently attracted an increasing interest in f-element chemistry, but the functionalization of arenes mediated by uranium-arene interactions is limited to a single example. Here, we report a new uranium-biphenylene complex supported by a bulky rigid trianionic NNN-pincer ligand in which the uranium-arene interaction is able to promote C−C bond cleavage and functionalization with CO under mild conditions to yield a U-bound 9-fluorenone. Reduction of the U(IV)-pincer complex [NNN-U(THF)Cl2K(THF)3]2 (1) with KC8, in the presence of biphenylene, results in the terminal arene complex [NNN-U(THF)(biphenylene)][K(THF)5] (3). DFT studies of 3 indicate the presence of two unpaired electrons located at the uranium center, in line with a U(IV) and a biphenylene dianion. Complex 3 undergoes Caryl−Caryl bond cleavage of the biphenylene ligand, affording [NNN-U(THF)(2,2'-biphenyl)][K(THF)2] (4). DFT studies indicated that, due to the interaction between the biphenylene dianion and the uranium, a concerted ring opening reaction can occur on the strained four members ring to yield 4 while the uranium center retains a +IV oxidation state. Complex 4 undergoes facile CO insertion into the U−Caryl bond, followed by the Caryl−Ccarbonyl bond formation, yielding [NNN-U(THF)2(fluorenone)][K(THF)4] (5). This work demonstrates the potentials of uranium-arene interactions to promote arene activation and functionalization\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc04248h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc04248h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
C−C Bond Cleavage and Carbonylation Enabled by an NNN-Pincer Uranium Scaffold via Metal-Arene Interaction
Metal-arene complexes have recently attracted an increasing interest in f-element chemistry, but the functionalization of arenes mediated by uranium-arene interactions is limited to a single example. Here, we report a new uranium-biphenylene complex supported by a bulky rigid trianionic NNN-pincer ligand in which the uranium-arene interaction is able to promote C−C bond cleavage and functionalization with CO under mild conditions to yield a U-bound 9-fluorenone. Reduction of the U(IV)-pincer complex [NNN-U(THF)Cl2K(THF)3]2 (1) with KC8, in the presence of biphenylene, results in the terminal arene complex [NNN-U(THF)(biphenylene)][K(THF)5] (3). DFT studies of 3 indicate the presence of two unpaired electrons located at the uranium center, in line with a U(IV) and a biphenylene dianion. Complex 3 undergoes Caryl−Caryl bond cleavage of the biphenylene ligand, affording [NNN-U(THF)(2,2'-biphenyl)][K(THF)2] (4). DFT studies indicated that, due to the interaction between the biphenylene dianion and the uranium, a concerted ring opening reaction can occur on the strained four members ring to yield 4 while the uranium center retains a +IV oxidation state. Complex 4 undergoes facile CO insertion into the U−Caryl bond, followed by the Caryl−Ccarbonyl bond formation, yielding [NNN-U(THF)2(fluorenone)][K(THF)4] (5). This work demonstrates the potentials of uranium-arene interactions to promote arene activation and functionalization
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.