Qianqian Chen , Emmanuelle Vaudour , Anne C. Richer-de-Forges , Dominique Arrouays
{"title":"土壤遥感光谱指数:定义、普及和问题。关键概述","authors":"Qianqian Chen , Emmanuelle Vaudour , Anne C. Richer-de-Forges , Dominique Arrouays","doi":"10.1016/j.rse.2025.114918","DOIUrl":null,"url":null,"abstract":"<div><div>Serving as a powerful proxy in remote sensing studies, spectral indices can generate meaningful environmental interpretation from either raw or atmospherically corrected spectral data, and characterise and quantify some important properties of various objects on Earth’s surface. However, while numerous spectral indices have been developed over time, since the very launch of civilian satellites until now, some critical issues in their usage, such as comparability, remain scarcely studied, which may lead to incorrect, inconsistent, and unreliable results.</div><div>In this study, we collected 471 spectral indices of various environment components (vegetation, water, and soil) that might be leveraged for soil studies, and traced their popularity in scientific publications over the past decades. The bibliometric analysis revealed a growing interest and utilisation of spectral indices as Earth-observing satellite technology advanced. Based on both literature and, for sake of complementation and illustration, some targeted regional-scale case studies, we discuss the issues of naming confusion, comparability, applicability, accuracy trade-offs, and reproducibility of using spectral indices.</div><div>Overall, this overview provides an extensive list of spectral indices, both soil indices and soil-related indices, that can be useful for characterising these environment components by remote sensing. It draws attention to some misuses and confusions that must be avoided to prevent scientific pitfalls. The comparisons between different spectral indices, sensors, and correction methods, highlight the confusing effects that the misuse and non-standardised practices of the spectral indices useful for soil, may have on soil property mapping and monitoring. Insights to the judicious and appropriate usage of spectral indices in the remote sensing of soil are provided.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"329 ","pages":"Article 114918"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral indices in remote sensing of soil: definition, popularity, and issues. A critical overview\",\"authors\":\"Qianqian Chen , Emmanuelle Vaudour , Anne C. Richer-de-Forges , Dominique Arrouays\",\"doi\":\"10.1016/j.rse.2025.114918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Serving as a powerful proxy in remote sensing studies, spectral indices can generate meaningful environmental interpretation from either raw or atmospherically corrected spectral data, and characterise and quantify some important properties of various objects on Earth’s surface. However, while numerous spectral indices have been developed over time, since the very launch of civilian satellites until now, some critical issues in their usage, such as comparability, remain scarcely studied, which may lead to incorrect, inconsistent, and unreliable results.</div><div>In this study, we collected 471 spectral indices of various environment components (vegetation, water, and soil) that might be leveraged for soil studies, and traced their popularity in scientific publications over the past decades. The bibliometric analysis revealed a growing interest and utilisation of spectral indices as Earth-observing satellite technology advanced. Based on both literature and, for sake of complementation and illustration, some targeted regional-scale case studies, we discuss the issues of naming confusion, comparability, applicability, accuracy trade-offs, and reproducibility of using spectral indices.</div><div>Overall, this overview provides an extensive list of spectral indices, both soil indices and soil-related indices, that can be useful for characterising these environment components by remote sensing. It draws attention to some misuses and confusions that must be avoided to prevent scientific pitfalls. The comparisons between different spectral indices, sensors, and correction methods, highlight the confusing effects that the misuse and non-standardised practices of the spectral indices useful for soil, may have on soil property mapping and monitoring. Insights to the judicious and appropriate usage of spectral indices in the remote sensing of soil are provided.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"329 \",\"pages\":\"Article 114918\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725003220\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003220","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spectral indices in remote sensing of soil: definition, popularity, and issues. A critical overview
Serving as a powerful proxy in remote sensing studies, spectral indices can generate meaningful environmental interpretation from either raw or atmospherically corrected spectral data, and characterise and quantify some important properties of various objects on Earth’s surface. However, while numerous spectral indices have been developed over time, since the very launch of civilian satellites until now, some critical issues in their usage, such as comparability, remain scarcely studied, which may lead to incorrect, inconsistent, and unreliable results.
In this study, we collected 471 spectral indices of various environment components (vegetation, water, and soil) that might be leveraged for soil studies, and traced their popularity in scientific publications over the past decades. The bibliometric analysis revealed a growing interest and utilisation of spectral indices as Earth-observing satellite technology advanced. Based on both literature and, for sake of complementation and illustration, some targeted regional-scale case studies, we discuss the issues of naming confusion, comparability, applicability, accuracy trade-offs, and reproducibility of using spectral indices.
Overall, this overview provides an extensive list of spectral indices, both soil indices and soil-related indices, that can be useful for characterising these environment components by remote sensing. It draws attention to some misuses and confusions that must be avoided to prevent scientific pitfalls. The comparisons between different spectral indices, sensors, and correction methods, highlight the confusing effects that the misuse and non-standardised practices of the spectral indices useful for soil, may have on soil property mapping and monitoring. Insights to the judicious and appropriate usage of spectral indices in the remote sensing of soil are provided.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.