Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi
{"title":"六态分子开关中的取代基效应","authors":"Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi","doi":"10.1039/D5CP02098K","DOIUrl":null,"url":null,"abstract":"<p >This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 33","pages":" 17178-17182"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp02098k?page=search","citationCount":"0","resultStr":"{\"title\":\"Substituent effects in a six-state molecular switch†\",\"authors\":\"Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi\",\"doi\":\"10.1039/D5CP02098K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 33\",\"pages\":\" 17178-17182\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp02098k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02098k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02098k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Substituent effects in a six-state molecular switch†
This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.