六态分子开关中的取代基效应

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi
{"title":"六态分子开关中的取代基效应","authors":"Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi","doi":"10.1039/D5CP02098K","DOIUrl":null,"url":null,"abstract":"<p >This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 33","pages":" 17178-17182"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp02098k?page=search","citationCount":"0","resultStr":"{\"title\":\"Substituent effects in a six-state molecular switch†\",\"authors\":\"Rachael Hannah, Kirsten M. van der Geest, Shahrzad Shafei, Ben L. Feringa and Ryan C. Chiechi\",\"doi\":\"10.1039/D5CP02098K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 33\",\"pages\":\" 17178-17182\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp02098k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02098k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02098k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一系列的四个吲哚啉恶唑烷分子开关,能够通过分别处理光异构和立体异构来访问多个不同的状态。光开关是分子器件中有价值的组件,因为它们能够使用光作为非侵入性输入在不同状态之间异构化。虽然大多数光开关是二进制的,在两种状态之间转换,但多状态开关提供了扩展的操作能力,并显示出多比特架构的前景。合成了4种不同电子结构的吲哚啉恶唑烷,并对其在不同溶剂中的开关行为进行了研究。虽然吸电子取代基抑制了光异构化途径,但低聚乙二醇链的加入可以实现可逆的光异构化和六种光和立体异构体组合之间的酸致变色切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Substituent effects in a six-state molecular switch†

Substituent effects in a six-state molecular switch†

This paper describes a series of four indolinooxazolidine molecular switches capable of accessing multiple distinct states by separately addressing photo- and stereo-isomerism. Photoswitches serve as valuable components in molecular devices owing to their ability to isomerize between distinct states using light as a non-invasive input. While most photoswitches are binary, converting between two states, multistate switches offer expanded operational capabilities and show promise for multi-bit architectures. We synthesized a series of four indolinooxazolidines with varied electronic structure and examined their switching behavior in different solvents. While electron-withdrawing substituents inhibit the photoisomerization pathway, the incorporation of an oligoethylene glycol chain enables both reversible photoisomerisation and acidochromic switching between six combinations of photo- and stereo-isomers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信