{"title":"m5U-HybridNet:整合具有CNN特征的RNA基础模型,用于准确预测5-甲基尿嘧啶修饰位点。","authors":"Xinyu Li,Zhenjie Luo,Jingwei Lv,Chao Yang,Shankai Yan,Junlin Xu,Yajie Meng,Leyi Wei,Zilong Zhang,Quan Zou,Feifei Cui","doi":"10.1021/acs.jcim.5c01237","DOIUrl":null,"url":null,"abstract":"The 5-methyluridine (m5U) modification in RNA is vital for numerous biological processes, making its precise identification a key focus in computational biology. However, traditional wet-lab detection methods are cumbersome and time-consuming, whereas existing machine learning and deep learning computational prediction models still have room for improvement. Consequently, this study introduces m5U-HybridNet, an innovative framework that strategically integrates an RNA foundation model (RNA-FM) for deep semantic feature extraction with convolutional neural network-derived characteristics, attaining unparalleled success in identifying RNA m5U modification sites. Simultaneously, when compared with other existing models across different cell types and experimental techniques, it exhibits outstanding generalization capabilities. The m5U-HybridNet web server, accessible at http://www.bioai-lab.com/m5U, offers an effective and reliable platform for predicting RNA modification sites. It not only implies the diverse potential applications of pretrained models in the analysis of biological sequences but also enhances the application of data-driven machine intelligence in the realm of molecular biophysics principles.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"18 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m5U-HybridNet: Integrating an RNA Foundation Model with CNN Features for Accurate Prediction of 5-Methyluridine Modification Sites.\",\"authors\":\"Xinyu Li,Zhenjie Luo,Jingwei Lv,Chao Yang,Shankai Yan,Junlin Xu,Yajie Meng,Leyi Wei,Zilong Zhang,Quan Zou,Feifei Cui\",\"doi\":\"10.1021/acs.jcim.5c01237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 5-methyluridine (m5U) modification in RNA is vital for numerous biological processes, making its precise identification a key focus in computational biology. However, traditional wet-lab detection methods are cumbersome and time-consuming, whereas existing machine learning and deep learning computational prediction models still have room for improvement. Consequently, this study introduces m5U-HybridNet, an innovative framework that strategically integrates an RNA foundation model (RNA-FM) for deep semantic feature extraction with convolutional neural network-derived characteristics, attaining unparalleled success in identifying RNA m5U modification sites. Simultaneously, when compared with other existing models across different cell types and experimental techniques, it exhibits outstanding generalization capabilities. The m5U-HybridNet web server, accessible at http://www.bioai-lab.com/m5U, offers an effective and reliable platform for predicting RNA modification sites. It not only implies the diverse potential applications of pretrained models in the analysis of biological sequences but also enhances the application of data-driven machine intelligence in the realm of molecular biophysics principles.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c01237\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01237","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
m5U-HybridNet: Integrating an RNA Foundation Model with CNN Features for Accurate Prediction of 5-Methyluridine Modification Sites.
The 5-methyluridine (m5U) modification in RNA is vital for numerous biological processes, making its precise identification a key focus in computational biology. However, traditional wet-lab detection methods are cumbersome and time-consuming, whereas existing machine learning and deep learning computational prediction models still have room for improvement. Consequently, this study introduces m5U-HybridNet, an innovative framework that strategically integrates an RNA foundation model (RNA-FM) for deep semantic feature extraction with convolutional neural network-derived characteristics, attaining unparalleled success in identifying RNA m5U modification sites. Simultaneously, when compared with other existing models across different cell types and experimental techniques, it exhibits outstanding generalization capabilities. The m5U-HybridNet web server, accessible at http://www.bioai-lab.com/m5U, offers an effective and reliable platform for predicting RNA modification sites. It not only implies the diverse potential applications of pretrained models in the analysis of biological sequences but also enhances the application of data-driven machine intelligence in the realm of molecular biophysics principles.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.