基于生态系统的油藏计算。假设。

IF 1.9 4区 生物学 Q2 BIOLOGY
Alessandro Chiolerio , Zoran Konkoli , Andrew Adamatzky
{"title":"基于生态系统的油藏计算。假设。","authors":"Alessandro Chiolerio ,&nbsp;Zoran Konkoli ,&nbsp;Andrew Adamatzky","doi":"10.1016/j.biosystems.2025.105525","DOIUrl":null,"url":null,"abstract":"<div><div>Reservoir computing (RC) has emerged as a powerful computational paradigm, leveraging the intrinsic dynamics of complex systems to process temporal data efficiently. Here we propose to extend RC into ecological domains, where the ecosystems themselves can function as computational reservoirs, exploiting their complexity and extreme degree of interconnectedness. This position paper explores the concept of ecosystem-based reservoir computing (ERC), examining its theoretical foundations, empirical evidence, and potential applications. We argue that ERC not only offers a novel approach to computation, but also provides insights into the computational capabilities inherent in ecological systems and offers a new paradigm for remote sensing applications.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"255 ","pages":"Article 105525"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecosystem-based reservoir computing. Hypothesis paper\",\"authors\":\"Alessandro Chiolerio ,&nbsp;Zoran Konkoli ,&nbsp;Andrew Adamatzky\",\"doi\":\"10.1016/j.biosystems.2025.105525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reservoir computing (RC) has emerged as a powerful computational paradigm, leveraging the intrinsic dynamics of complex systems to process temporal data efficiently. Here we propose to extend RC into ecological domains, where the ecosystems themselves can function as computational reservoirs, exploiting their complexity and extreme degree of interconnectedness. This position paper explores the concept of ecosystem-based reservoir computing (ERC), examining its theoretical foundations, empirical evidence, and potential applications. We argue that ERC not only offers a novel approach to computation, but also provides insights into the computational capabilities inherent in ecological systems and offers a new paradigm for remote sensing applications.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"255 \",\"pages\":\"Article 105525\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264725001352\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725001352","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

油藏计算(RC)已经成为一种强大的计算范式,利用复杂系统的内在动力学来有效地处理时间数据。在这里,我们建议将RC扩展到生态领域,其中生态系统本身可以作为计算水库,利用它们的复杂性和极端程度的互联性。本文探讨了基于生态系统的油藏计算(ERC)的概念,研究了其理论基础、经验证据和潜在的应用。我们认为ERC不仅提供了一种新的计算方法,而且提供了对生态系统固有计算能力的见解,并为遥感应用提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecosystem-based reservoir computing. Hypothesis paper
Reservoir computing (RC) has emerged as a powerful computational paradigm, leveraging the intrinsic dynamics of complex systems to process temporal data efficiently. Here we propose to extend RC into ecological domains, where the ecosystems themselves can function as computational reservoirs, exploiting their complexity and extreme degree of interconnectedness. This position paper explores the concept of ecosystem-based reservoir computing (ERC), examining its theoretical foundations, empirical evidence, and potential applications. We argue that ERC not only offers a novel approach to computation, but also provides insights into the computational capabilities inherent in ecological systems and offers a new paradigm for remote sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信