Angela Galardi, Valentina Fogazzi, Claudia Tottone, Marta Giussani, Serenella M Pupa, Giulia Cosentino, Marilena V Iorio
{"title":"“细胞外小泡:在原发性和远处微环境中为乳腺癌议程服务的信使”。","authors":"Angela Galardi, Valentina Fogazzi, Claudia Tottone, Marta Giussani, Serenella M Pupa, Giulia Cosentino, Marilena V Iorio","doi":"10.1186/s13046-025-03471-y","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) remains a leading cause of cancer-related mortality in women, with complex mechanisms driving its initiation, progression, and resistance to therapy. In recent years, the tumor microenvironment (TME) has gained attention for its critical role in shaping tumor behavior, where small extracellular vesicles (small EVs) have emerged as key mediators of intercellular communication. These vesicles carry a diverse cargo of proteins, lipids, DNA, and various non-coding RNAs-such as miR-21, miR-155, and miR-1246-mirroring the molecular status of their originating cells. This review highlights the roles of small EVs in immune modulation, stromal remodelling, and metastatic niche formation, emphasizing their contribution to therapy resistance and immune evasion. We discuss recent updates on EV biogenesis, characterisation and isolation techniques, such as ultracentrifugation, immunoaffinity and microfluidic systems. We also critically evaluate their potential for clinical application and how well they conform to the MISEV2023 guidelines. Furthermore, we examine small EVs as diagnostic tools in liquid biopsies and compare them with conventional methods such as mammography and tissue biopsies. We also discuss organotropism mediated by small EV cargo (e.g., integrins α6β4, αvβ5) and the diagnostic potential of protein and lipid signatures (e.g., PD-L1, CD63, and exosomal lipidomics). Therapeutically, we explore engineered small EVs for drug delivery, gene modulation, and immune activation, addressing challenges of targeting efficiency, in vivo stability, immunogenicity, and clinical scalability. The review discusses ongoing clinical trials involving small EVs in BC and highlights key translational gaps between preclinical advances and clinical implementation. Finally, we explores how integrating artificial intelligence, single-cell transcriptomics, and multi-omics approaches can help overcome major challenges such as small EV heterogeneity and tracking limitations. Crucially, this integration enables a more tailored understanding of each patient's tumor biology, reducing therapeutic failures by guiding more personalized and effective treatment strategies. Overall, small EVs represent a transformative tool in precision oncology, contingent on resolving key challenges in their clinical translation.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"216"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278669/pdf/","citationCount":"0","resultStr":"{\"title\":\"\\\"Small extracellular vesicles: messengers at the service of breast cancer agenda in the primary and distant microenvironments\\\".\",\"authors\":\"Angela Galardi, Valentina Fogazzi, Claudia Tottone, Marta Giussani, Serenella M Pupa, Giulia Cosentino, Marilena V Iorio\",\"doi\":\"10.1186/s13046-025-03471-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) remains a leading cause of cancer-related mortality in women, with complex mechanisms driving its initiation, progression, and resistance to therapy. In recent years, the tumor microenvironment (TME) has gained attention for its critical role in shaping tumor behavior, where small extracellular vesicles (small EVs) have emerged as key mediators of intercellular communication. These vesicles carry a diverse cargo of proteins, lipids, DNA, and various non-coding RNAs-such as miR-21, miR-155, and miR-1246-mirroring the molecular status of their originating cells. This review highlights the roles of small EVs in immune modulation, stromal remodelling, and metastatic niche formation, emphasizing their contribution to therapy resistance and immune evasion. We discuss recent updates on EV biogenesis, characterisation and isolation techniques, such as ultracentrifugation, immunoaffinity and microfluidic systems. We also critically evaluate their potential for clinical application and how well they conform to the MISEV2023 guidelines. Furthermore, we examine small EVs as diagnostic tools in liquid biopsies and compare them with conventional methods such as mammography and tissue biopsies. We also discuss organotropism mediated by small EV cargo (e.g., integrins α6β4, αvβ5) and the diagnostic potential of protein and lipid signatures (e.g., PD-L1, CD63, and exosomal lipidomics). Therapeutically, we explore engineered small EVs for drug delivery, gene modulation, and immune activation, addressing challenges of targeting efficiency, in vivo stability, immunogenicity, and clinical scalability. The review discusses ongoing clinical trials involving small EVs in BC and highlights key translational gaps between preclinical advances and clinical implementation. Finally, we explores how integrating artificial intelligence, single-cell transcriptomics, and multi-omics approaches can help overcome major challenges such as small EV heterogeneity and tracking limitations. Crucially, this integration enables a more tailored understanding of each patient's tumor biology, reducing therapeutic failures by guiding more personalized and effective treatment strategies. Overall, small EVs represent a transformative tool in precision oncology, contingent on resolving key challenges in their clinical translation.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"216\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03471-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03471-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
"Small extracellular vesicles: messengers at the service of breast cancer agenda in the primary and distant microenvironments".
Breast cancer (BC) remains a leading cause of cancer-related mortality in women, with complex mechanisms driving its initiation, progression, and resistance to therapy. In recent years, the tumor microenvironment (TME) has gained attention for its critical role in shaping tumor behavior, where small extracellular vesicles (small EVs) have emerged as key mediators of intercellular communication. These vesicles carry a diverse cargo of proteins, lipids, DNA, and various non-coding RNAs-such as miR-21, miR-155, and miR-1246-mirroring the molecular status of their originating cells. This review highlights the roles of small EVs in immune modulation, stromal remodelling, and metastatic niche formation, emphasizing their contribution to therapy resistance and immune evasion. We discuss recent updates on EV biogenesis, characterisation and isolation techniques, such as ultracentrifugation, immunoaffinity and microfluidic systems. We also critically evaluate their potential for clinical application and how well they conform to the MISEV2023 guidelines. Furthermore, we examine small EVs as diagnostic tools in liquid biopsies and compare them with conventional methods such as mammography and tissue biopsies. We also discuss organotropism mediated by small EV cargo (e.g., integrins α6β4, αvβ5) and the diagnostic potential of protein and lipid signatures (e.g., PD-L1, CD63, and exosomal lipidomics). Therapeutically, we explore engineered small EVs for drug delivery, gene modulation, and immune activation, addressing challenges of targeting efficiency, in vivo stability, immunogenicity, and clinical scalability. The review discusses ongoing clinical trials involving small EVs in BC and highlights key translational gaps between preclinical advances and clinical implementation. Finally, we explores how integrating artificial intelligence, single-cell transcriptomics, and multi-omics approaches can help overcome major challenges such as small EV heterogeneity and tracking limitations. Crucially, this integration enables a more tailored understanding of each patient's tumor biology, reducing therapeutic failures by guiding more personalized and effective treatment strategies. Overall, small EVs represent a transformative tool in precision oncology, contingent on resolving key challenges in their clinical translation.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.