在内镜图像上使用卷积混合模型增强胃肠道疾病分类。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Anıl Utku
{"title":"在内镜图像上使用卷积混合模型增强胃肠道疾病分类。","authors":"Anıl Utku","doi":"10.1007/s13246-025-01600-7","DOIUrl":null,"url":null,"abstract":"<p><p>Endoscopy is a procedure that allows examination of the gastrointestinal system, including the stomach, esophagus, large intestine, and duodenum, with the help of an endoscope. Processing of endoscopic images is important for early detection and treatment of gastrointestinal diseases. In this study, hybrid ConvViT was developed using CNN and ViT to increase the classification accuracy of pathologies in gastrointestinal endoscopic images. CNNs are well-suited for capturing local spatial features through hierarchical convolutions, making them highly effective in detecting fine-grained textures and edge patterns. These capabilities complement the ViT's global attention mechanism, which excels at modeling long-range dependencies in images. The motivation of this study is to increase the classification accuracy and reliability with the ConvViT model, which was developed by combining the practical features of CNN and ViT models, which are individually successful in different aspects of image processing. The ConvViT model was compared with VGG-16, ResNet-50, Inception-V3 and ViT. Comparable models were tested using a gastrointestinal endoscopic image dataset containing ulcers, polyps, inflammation, bleeding, and regular anatomical features. Experiments showed that ConvViT had better prediction performance than compared models, with 95.87% classification accuracy.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced gastrointestinal disease classification using a convvit hybrid model on endoscopic images.\",\"authors\":\"Anıl Utku\",\"doi\":\"10.1007/s13246-025-01600-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoscopy is a procedure that allows examination of the gastrointestinal system, including the stomach, esophagus, large intestine, and duodenum, with the help of an endoscope. Processing of endoscopic images is important for early detection and treatment of gastrointestinal diseases. In this study, hybrid ConvViT was developed using CNN and ViT to increase the classification accuracy of pathologies in gastrointestinal endoscopic images. CNNs are well-suited for capturing local spatial features through hierarchical convolutions, making them highly effective in detecting fine-grained textures and edge patterns. These capabilities complement the ViT's global attention mechanism, which excels at modeling long-range dependencies in images. The motivation of this study is to increase the classification accuracy and reliability with the ConvViT model, which was developed by combining the practical features of CNN and ViT models, which are individually successful in different aspects of image processing. The ConvViT model was compared with VGG-16, ResNet-50, Inception-V3 and ViT. Comparable models were tested using a gastrointestinal endoscopic image dataset containing ulcers, polyps, inflammation, bleeding, and regular anatomical features. Experiments showed that ConvViT had better prediction performance than compared models, with 95.87% classification accuracy.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01600-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01600-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

内窥镜检查是在内窥镜的帮助下检查胃肠道系统,包括胃、食道、大肠和十二指肠的一种方法。内镜图像的处理对于胃肠道疾病的早期发现和治疗具有重要意义。本研究利用CNN和ViT开发了混合ConvViT,以提高胃肠道内镜图像病理分类的准确性。cnn非常适合通过分层卷积捕获局部空间特征,使其在检测细粒度纹理和边缘模式方面非常有效。这些功能补充了ViT的全局注意机制,该机制擅长对图像中的远程依赖关系进行建模。本研究的动机是利用ConvViT模型来提高分类精度和可靠性,该模型是结合CNN和ViT模型的实际特点而开发的,这两种模型在图像处理的不同方面各自取得了成功。将ConvViT模型与VGG-16、ResNet-50、Inception-V3和ViT模型进行比较。使用包含溃疡、息肉、炎症、出血和常规解剖特征的胃肠内镜图像数据集对可比模型进行测试。实验表明,与对比模型相比,ConvViT具有更好的预测性能,分类准确率达到95.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced gastrointestinal disease classification using a convvit hybrid model on endoscopic images.

Endoscopy is a procedure that allows examination of the gastrointestinal system, including the stomach, esophagus, large intestine, and duodenum, with the help of an endoscope. Processing of endoscopic images is important for early detection and treatment of gastrointestinal diseases. In this study, hybrid ConvViT was developed using CNN and ViT to increase the classification accuracy of pathologies in gastrointestinal endoscopic images. CNNs are well-suited for capturing local spatial features through hierarchical convolutions, making them highly effective in detecting fine-grained textures and edge patterns. These capabilities complement the ViT's global attention mechanism, which excels at modeling long-range dependencies in images. The motivation of this study is to increase the classification accuracy and reliability with the ConvViT model, which was developed by combining the practical features of CNN and ViT models, which are individually successful in different aspects of image processing. The ConvViT model was compared with VGG-16, ResNet-50, Inception-V3 and ViT. Comparable models were tested using a gastrointestinal endoscopic image dataset containing ulcers, polyps, inflammation, bleeding, and regular anatomical features. Experiments showed that ConvViT had better prediction performance than compared models, with 95.87% classification accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信