基于胃原体的体外检测抗covid -19药物莫诺匹拉韦的发育毒性。

IF 4.1 3区 医学 Q2 TOXICOLOGY
Margaret Carrell Huntsman, Yusuke Marikawa
{"title":"基于胃原体的体外检测抗covid -19药物莫诺匹拉韦的发育毒性。","authors":"Margaret Carrell Huntsman, Yusuke Marikawa","doi":"10.1093/toxsci/kfaf093","DOIUrl":null,"url":null,"abstract":"<p><p>In pharmaceutical drug development, animal tests are traditionally required to conduct comprehensive toxicity assessments before initiating human clinical trials. However, animal tests are time-consuming and can hinder the rapid development of drugs needed to combat urgent health crises, such as the COVID-19 pandemic. Therefore, faster non-animal alternatives are critical to accelerating preclinical toxicity assessments. Molnupiravir, an antiviral medication authorized for emergency use to treat COVID-19, is an oral pro-drug that is metabolized into its active form, N4-hydroxycytidine (NHC). The developmental toxicity of molnupiravir was initially identified in preclinical animal studies. The present study aims to determine whether in vitro assays using gastruloids-three-dimensional aggregates of pluripotent stem cells that mimic axial elongation morphogenesis of early embryos-can effectively detect the developmental toxicity of molnupiravir in a clinically relevant context. In our experiments, NHC at 20 μM significantly impaired the morphological progression and altered the gene expression profiles in gastruloids derived from mouse P19C5 stem cells. Similarly, in a human embryonic stem cell-based morphogenesis model, NHC reduced the aggregate size at 10 μM and induced significant gene expression changes at concentrations as low as 2.5 μM. Notably, these NHC concentrations are comparable to the plasma levels observed in humans (approximately 10.8 μM) following administration of the clinically recommended dose of molnupiravir. These findings demonstrate that gastruloid-based assays can reliably detect the developmental toxicity of NHC at clinically relevant concentrations, supporting their utility as non-animal tools for expediting preclinical developmental toxicity assessments.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"74-90"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of developmental toxicity of the anti-COVID-19 drug molnupiravir using gastruloid-based in vitro assays.\",\"authors\":\"Margaret Carrell Huntsman, Yusuke Marikawa\",\"doi\":\"10.1093/toxsci/kfaf093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In pharmaceutical drug development, animal tests are traditionally required to conduct comprehensive toxicity assessments before initiating human clinical trials. However, animal tests are time-consuming and can hinder the rapid development of drugs needed to combat urgent health crises, such as the COVID-19 pandemic. Therefore, faster non-animal alternatives are critical to accelerating preclinical toxicity assessments. Molnupiravir, an antiviral medication authorized for emergency use to treat COVID-19, is an oral pro-drug that is metabolized into its active form, N4-hydroxycytidine (NHC). The developmental toxicity of molnupiravir was initially identified in preclinical animal studies. The present study aims to determine whether in vitro assays using gastruloids-three-dimensional aggregates of pluripotent stem cells that mimic axial elongation morphogenesis of early embryos-can effectively detect the developmental toxicity of molnupiravir in a clinically relevant context. In our experiments, NHC at 20 μM significantly impaired the morphological progression and altered the gene expression profiles in gastruloids derived from mouse P19C5 stem cells. Similarly, in a human embryonic stem cell-based morphogenesis model, NHC reduced the aggregate size at 10 μM and induced significant gene expression changes at concentrations as low as 2.5 μM. Notably, these NHC concentrations are comparable to the plasma levels observed in humans (approximately 10.8 μM) following administration of the clinically recommended dose of molnupiravir. These findings demonstrate that gastruloid-based assays can reliably detect the developmental toxicity of NHC at clinically relevant concentrations, supporting their utility as non-animal tools for expediting preclinical developmental toxicity assessments.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":\" \",\"pages\":\"74-90\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfaf093\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在药物开发中,在开始人体临床试验之前,传统上需要进行动物试验来进行全面的毒性评估。然而,动物试验耗时,并可能阻碍应对COVID-19大流行等紧急卫生危机所需药物的快速开发。因此,更快的非动物替代品对于加速临床前毒性评估至关重要。Molnupiravir是一种批准用于紧急治疗COVID-19的抗病毒药物,是一种口服前药,可代谢成活性形式n4 -羟基胞苷(NHC)。molnupiravir的发育毒性最初是在临床前动物研究中确定的。本研究旨在确定在临床相关背景下,利用类胃原体(模拟早期胚胎轴向伸长形态发生的多能干细胞的三维聚集体)进行的体外实验是否能有效检测莫诺皮拉韦的发育毒性。在我们的实验中,20 μM的NHC显著损害了小鼠P19C5干细胞衍生的胃样细胞的形态进展,并改变了基因表达谱。同样,在基于人胚胎干细胞的形态发生模型中,NHC在10 μM时降低了聚集体大小,在2.5 μM浓度时诱导了显著的基因表达变化。值得注意的是,这些NHC浓度与服用临床推荐剂量的molnupiravir后观察到的人类血浆水平(约10.8 μM)相当。这些发现表明,基于原肠腺样蛋白的检测方法可以可靠地检测临床相关浓度的NHC的发育毒性,支持其作为加速临床前发育毒性评估的非动物工具的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of developmental toxicity of the anti-COVID-19 drug molnupiravir using gastruloid-based in vitro assays.

In pharmaceutical drug development, animal tests are traditionally required to conduct comprehensive toxicity assessments before initiating human clinical trials. However, animal tests are time-consuming and can hinder the rapid development of drugs needed to combat urgent health crises, such as the COVID-19 pandemic. Therefore, faster non-animal alternatives are critical to accelerating preclinical toxicity assessments. Molnupiravir, an antiviral medication authorized for emergency use to treat COVID-19, is an oral pro-drug that is metabolized into its active form, N4-hydroxycytidine (NHC). The developmental toxicity of molnupiravir was initially identified in preclinical animal studies. The present study aims to determine whether in vitro assays using gastruloids-three-dimensional aggregates of pluripotent stem cells that mimic axial elongation morphogenesis of early embryos-can effectively detect the developmental toxicity of molnupiravir in a clinically relevant context. In our experiments, NHC at 20 μM significantly impaired the morphological progression and altered the gene expression profiles in gastruloids derived from mouse P19C5 stem cells. Similarly, in a human embryonic stem cell-based morphogenesis model, NHC reduced the aggregate size at 10 μM and induced significant gene expression changes at concentrations as low as 2.5 μM. Notably, these NHC concentrations are comparable to the plasma levels observed in humans (approximately 10.8 μM) following administration of the clinically recommended dose of molnupiravir. These findings demonstrate that gastruloid-based assays can reliably detect the developmental toxicity of NHC at clinically relevant concentrations, supporting their utility as non-animal tools for expediting preclinical developmental toxicity assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信