Jie Tan, Xueshi Li, Yuguang Wang, Lin Wang, Xingguo Zhao, Yixu Wang, Meng Cui
{"title":"EIF3B稳定MAP2K2,激活ERK通路,促进喉鳞癌的进展。","authors":"Jie Tan, Xueshi Li, Yuguang Wang, Lin Wang, Xingguo Zhao, Yixu Wang, Meng Cui","doi":"10.1038/s41420-025-02634-2","DOIUrl":null,"url":null,"abstract":"<p><p>To elucidate the role of eukaryotic translation initiation factor 3 subunit B (EIF3B) in laryngeal squamous cell carcinoma (LSCC) progression and its regulatory mechanism. Integrated bioinformatics analysis (GEO, TCGA), immunohistochemistry (IHC), lentiviral-mediated gene knockdown/overexpression, co-immunoprecipitation (Co-IP), Western blotting (WB), and in vivo xenograft models were employed. Clinically, our findings revealed an upregulation of EIF3B expression in LSCC, with its abnormally high levels significantly correlating with poor survival outcomes among patients. Functionally, ablation of EIF3B potently inhibited cancer cell proliferation, colony formation, and migratory abilities. Mechanistically, EIF3B stabilized MAP2K2 via direct interaction with its P3 domain, inhibiting VHL-mediated ubiquitination at K169. Notably, MAP2K2 kinase activity was essential for EIF3B-driven ERK phosphorylation and downstream oncogenic signaling. Moreover, EIF3B overexpression accelerated tumor growth in xenograft models, which was rescued by MAP2K2 knockdown. In Conclusion, EIF3B promotes LSCC progression by stabilizing MAP2K2, activating the ERK/MAPK pathway, and disrupting VHL-mediated proteostasis. Targeting the EIF3B-MAP2K2 axis may offer therapeutic strategies for LSCC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"333"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280010/pdf/","citationCount":"0","resultStr":"{\"title\":\"EIF3B stabilizes MAP2K2 to activate the ERK pathway and promote the progression of laryngeal squamous cell carcinoma.\",\"authors\":\"Jie Tan, Xueshi Li, Yuguang Wang, Lin Wang, Xingguo Zhao, Yixu Wang, Meng Cui\",\"doi\":\"10.1038/s41420-025-02634-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To elucidate the role of eukaryotic translation initiation factor 3 subunit B (EIF3B) in laryngeal squamous cell carcinoma (LSCC) progression and its regulatory mechanism. Integrated bioinformatics analysis (GEO, TCGA), immunohistochemistry (IHC), lentiviral-mediated gene knockdown/overexpression, co-immunoprecipitation (Co-IP), Western blotting (WB), and in vivo xenograft models were employed. Clinically, our findings revealed an upregulation of EIF3B expression in LSCC, with its abnormally high levels significantly correlating with poor survival outcomes among patients. Functionally, ablation of EIF3B potently inhibited cancer cell proliferation, colony formation, and migratory abilities. Mechanistically, EIF3B stabilized MAP2K2 via direct interaction with its P3 domain, inhibiting VHL-mediated ubiquitination at K169. Notably, MAP2K2 kinase activity was essential for EIF3B-driven ERK phosphorylation and downstream oncogenic signaling. Moreover, EIF3B overexpression accelerated tumor growth in xenograft models, which was rescued by MAP2K2 knockdown. In Conclusion, EIF3B promotes LSCC progression by stabilizing MAP2K2, activating the ERK/MAPK pathway, and disrupting VHL-mediated proteostasis. Targeting the EIF3B-MAP2K2 axis may offer therapeutic strategies for LSCC.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"333\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02634-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02634-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
EIF3B stabilizes MAP2K2 to activate the ERK pathway and promote the progression of laryngeal squamous cell carcinoma.
To elucidate the role of eukaryotic translation initiation factor 3 subunit B (EIF3B) in laryngeal squamous cell carcinoma (LSCC) progression and its regulatory mechanism. Integrated bioinformatics analysis (GEO, TCGA), immunohistochemistry (IHC), lentiviral-mediated gene knockdown/overexpression, co-immunoprecipitation (Co-IP), Western blotting (WB), and in vivo xenograft models were employed. Clinically, our findings revealed an upregulation of EIF3B expression in LSCC, with its abnormally high levels significantly correlating with poor survival outcomes among patients. Functionally, ablation of EIF3B potently inhibited cancer cell proliferation, colony formation, and migratory abilities. Mechanistically, EIF3B stabilized MAP2K2 via direct interaction with its P3 domain, inhibiting VHL-mediated ubiquitination at K169. Notably, MAP2K2 kinase activity was essential for EIF3B-driven ERK phosphorylation and downstream oncogenic signaling. Moreover, EIF3B overexpression accelerated tumor growth in xenograft models, which was rescued by MAP2K2 knockdown. In Conclusion, EIF3B promotes LSCC progression by stabilizing MAP2K2, activating the ERK/MAPK pathway, and disrupting VHL-mediated proteostasis. Targeting the EIF3B-MAP2K2 axis may offer therapeutic strategies for LSCC.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.