多变量1型糖尿病预测模型在多个筛查研究中的发展和重新校准

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Erin L Templeman, Lauric A Ferrat, Hemang M Parikh, Lu You, Taylor M Triolo, Andrea K Steck, William A Hagopian, Kendra Vehik, Suna Onengut-Gumuscu, Peter A Gottlieb, Stephen S Rich, Jeffery P Krischer, Maria J Redondo, Richard A Oram
{"title":"多变量1型糖尿病预测模型在多个筛查研究中的发展和重新校准","authors":"Erin L Templeman, Lauric A Ferrat, Hemang M Parikh, Lu You, Taylor M Triolo, Andrea K Steck, William A Hagopian, Kendra Vehik, Suna Onengut-Gumuscu, Peter A Gottlieb, Stephen S Rich, Jeffery P Krischer, Maria J Redondo, Richard A Oram","doi":"10.1186/s12916-025-04225-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate type 1 diabetes prediction is important to facilitate screening for pre-clinical type 1 diabetes to enable potential early disease-modifying interventions and to reduce the risk of severe presentation with diabetic ketoacidosis. We aimed to assess the generalisability of a prediction model developed in children followed from birth. Additionally, we sought to create an application for easy calculation and visualisation of individualised risk prediction.</p><p><strong>Methods: </strong>We developed and internally validated a stratified prediction model combining a genetic risk score, age, islet autoantibodies, and family history using data from children followed since birth by The Environmental Determinants of Diabetes in the Young (TEDDY) study. We tested the validity of the model through external validation in the Type 1 Diabetes TrialNet Pathway to Prevention study, which conducts cross-sectional screening in relatives of people with type 1 diabetes. We recalibrated the model by adjusting for baseline risk and selection criteria in TrialNet using logistic recalibration to improve calibration across all ages.</p><p><strong>Results: </strong>The study included 7798 TEDDY and 4068 TrialNet participants, with 305 (4%) and 1373 (34%) developing type 1 diabetes, respectively. The stratified model showed similar discriminative ability in autoantibody-positive participants across TEDDY and TrialNet, but inferior calibration in TrialNet (Brier score 0.40 [95% CI 0.38,0.43]). Adjustment for baseline risk and selection criteria in TrialNet using logistic recalibration improved calibration across all ages (Brier score 0.16 [0.14,0.17]; p < 0.001). A web calculator was developed to visualise individual risk estimates ( https://t1dpredictor.diabetesgenes.org ).</p><p><strong>Conclusions: </strong>A stratified model incorporating the type 1 diabetes genetic risk score, family history, age, and autoantibody status can predict type 1 diabetes risk with improved accuracy, but may need recalibration depending on the screening strategy.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"433"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and recalibration of a multivariable type 1 diabetes prediction model for type 1 diabetes across multiple screening studies.\",\"authors\":\"Erin L Templeman, Lauric A Ferrat, Hemang M Parikh, Lu You, Taylor M Triolo, Andrea K Steck, William A Hagopian, Kendra Vehik, Suna Onengut-Gumuscu, Peter A Gottlieb, Stephen S Rich, Jeffery P Krischer, Maria J Redondo, Richard A Oram\",\"doi\":\"10.1186/s12916-025-04225-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate type 1 diabetes prediction is important to facilitate screening for pre-clinical type 1 diabetes to enable potential early disease-modifying interventions and to reduce the risk of severe presentation with diabetic ketoacidosis. We aimed to assess the generalisability of a prediction model developed in children followed from birth. Additionally, we sought to create an application for easy calculation and visualisation of individualised risk prediction.</p><p><strong>Methods: </strong>We developed and internally validated a stratified prediction model combining a genetic risk score, age, islet autoantibodies, and family history using data from children followed since birth by The Environmental Determinants of Diabetes in the Young (TEDDY) study. We tested the validity of the model through external validation in the Type 1 Diabetes TrialNet Pathway to Prevention study, which conducts cross-sectional screening in relatives of people with type 1 diabetes. We recalibrated the model by adjusting for baseline risk and selection criteria in TrialNet using logistic recalibration to improve calibration across all ages.</p><p><strong>Results: </strong>The study included 7798 TEDDY and 4068 TrialNet participants, with 305 (4%) and 1373 (34%) developing type 1 diabetes, respectively. The stratified model showed similar discriminative ability in autoantibody-positive participants across TEDDY and TrialNet, but inferior calibration in TrialNet (Brier score 0.40 [95% CI 0.38,0.43]). Adjustment for baseline risk and selection criteria in TrialNet using logistic recalibration improved calibration across all ages (Brier score 0.16 [0.14,0.17]; p < 0.001). A web calculator was developed to visualise individual risk estimates ( https://t1dpredictor.diabetesgenes.org ).</p><p><strong>Conclusions: </strong>A stratified model incorporating the type 1 diabetes genetic risk score, family history, age, and autoantibody status can predict type 1 diabetes risk with improved accuracy, but may need recalibration depending on the screening strategy.</p>\",\"PeriodicalId\":9188,\"journal\":{\"name\":\"BMC Medicine\",\"volume\":\"23 1\",\"pages\":\"433\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12916-025-04225-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-04225-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:准确的1型糖尿病预测对于促进临床前1型糖尿病的筛查,实现潜在的早期疾病改善干预和降低糖尿病酮症酸中毒严重表现的风险非常重要。我们的目的是评估一种预测模型在儿童出生后的普遍性。此外,我们试图创建一个易于计算和可视化个性化风险预测的应用程序。方法:我们开发并内部验证了一种分层预测模型,该模型结合了遗传风险评分、年龄、胰岛自身抗体和家族史,使用了自出生以来就被跟踪的儿童的数据,这些数据是由The Environmental决定因素of Diabetes in The Young (TEDDY)研究提供的。我们通过1型糖尿病试验网预防途径研究的外部验证来检验模型的有效性,该研究在1型糖尿病患者的亲属中进行横断面筛查。我们通过调整TrialNet中的基线风险和选择标准来重新校准模型,使用logistic重新校准来改进所有年龄段的校准。结果:该研究包括7798名TEDDY和4068名TrialNet参与者,分别有305名(4%)和1373名(34%)患有1型糖尿病。分层模型在TEDDY和TrialNet中对自身抗体阳性的参与者显示出相似的判别能力,但在TrialNet中校准较差(Brier评分0.40 [95% CI 0.38,0.43])。使用logistic再校准对TrialNet中的基线风险和选择标准进行调整,改善了所有年龄段的校准(Brier评分0.16 [0.14,0.17];结论:结合1型糖尿病遗传风险评分、家族史、年龄和自身抗体状态的分层模型可以提高预测1型糖尿病风险的准确性,但可能需要根据筛查策略重新校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and recalibration of a multivariable type 1 diabetes prediction model for type 1 diabetes across multiple screening studies.

Background: Accurate type 1 diabetes prediction is important to facilitate screening for pre-clinical type 1 diabetes to enable potential early disease-modifying interventions and to reduce the risk of severe presentation with diabetic ketoacidosis. We aimed to assess the generalisability of a prediction model developed in children followed from birth. Additionally, we sought to create an application for easy calculation and visualisation of individualised risk prediction.

Methods: We developed and internally validated a stratified prediction model combining a genetic risk score, age, islet autoantibodies, and family history using data from children followed since birth by The Environmental Determinants of Diabetes in the Young (TEDDY) study. We tested the validity of the model through external validation in the Type 1 Diabetes TrialNet Pathway to Prevention study, which conducts cross-sectional screening in relatives of people with type 1 diabetes. We recalibrated the model by adjusting for baseline risk and selection criteria in TrialNet using logistic recalibration to improve calibration across all ages.

Results: The study included 7798 TEDDY and 4068 TrialNet participants, with 305 (4%) and 1373 (34%) developing type 1 diabetes, respectively. The stratified model showed similar discriminative ability in autoantibody-positive participants across TEDDY and TrialNet, but inferior calibration in TrialNet (Brier score 0.40 [95% CI 0.38,0.43]). Adjustment for baseline risk and selection criteria in TrialNet using logistic recalibration improved calibration across all ages (Brier score 0.16 [0.14,0.17]; p < 0.001). A web calculator was developed to visualise individual risk estimates ( https://t1dpredictor.diabetesgenes.org ).

Conclusions: A stratified model incorporating the type 1 diabetes genetic risk score, family history, age, and autoantibody status can predict type 1 diabetes risk with improved accuracy, but may need recalibration depending on the screening strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信