动态训练增强了长期分子动力学的机器学习潜力。

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ivan Žugec*, Tin Hadži Veljković, Maite Alducin* and J. Iñaki Juaristi*, 
{"title":"动态训练增强了长期分子动力学的机器学习潜力。","authors":"Ivan Žugec*,&nbsp;Tin Hadži Veljković,&nbsp;Maite Alducin* and J. Iñaki Juaristi*,&nbsp;","doi":"10.1021/acs.jcim.5c01180","DOIUrl":null,"url":null,"abstract":"<p >Molecular dynamics (MD) simulations are vital for exploring complex systems in computational physics and chemistry. While machine learning methods dramatically reduce computational costs relative to ab initio methods, their accuracy in long-lasting simulations remains limited. Here we propose dynamic training (DT), a method designed to enhance accuracy of a model over extended MD simulations. Applying DT to an equivariant graph neural network (EGNN) on the challenging system of a hydrogen molecule interacting with a palladium cluster anchored to a graphene vacancy demonstrates a superior prediction accuracy compared to conventional approaches. Crucially, the DT architecture-independent design ensures its applicability across diverse machine learning potentials, making it a practical tool for advancing MD simulations.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 15","pages":"8033–8041"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5c01180","citationCount":"0","resultStr":"{\"title\":\"Dynamic Training Enhances Machine Learning Potentials for Long-Lasting Molecular Dynamics\",\"authors\":\"Ivan Žugec*,&nbsp;Tin Hadži Veljković,&nbsp;Maite Alducin* and J. Iñaki Juaristi*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.5c01180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular dynamics (MD) simulations are vital for exploring complex systems in computational physics and chemistry. While machine learning methods dramatically reduce computational costs relative to ab initio methods, their accuracy in long-lasting simulations remains limited. Here we propose dynamic training (DT), a method designed to enhance accuracy of a model over extended MD simulations. Applying DT to an equivariant graph neural network (EGNN) on the challenging system of a hydrogen molecule interacting with a palladium cluster anchored to a graphene vacancy demonstrates a superior prediction accuracy compared to conventional approaches. Crucially, the DT architecture-independent design ensures its applicability across diverse machine learning potentials, making it a practical tool for advancing MD simulations.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 15\",\"pages\":\"8033–8041\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5c01180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01180\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01180","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学(MD)模拟对于探索计算物理和化学中的复杂系统至关重要。虽然机器学习方法相对于从头计算方法大大降低了计算成本,但它们在长期模拟中的准确性仍然有限。在这里,我们提出了动态训练(DT),一种旨在提高模型在扩展MD模拟中的准确性的方法。与传统方法相比,将DT应用于具有挑战性的氢分子与固定在石墨烯空位上的钯团簇相互作用系统的等变图神经网络(EGNN)显示出更高的预测精度。至关重要的是,与DT架构无关的设计确保了其在不同机器学习潜力中的适用性,使其成为推进MD模拟的实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Training Enhances Machine Learning Potentials for Long-Lasting Molecular Dynamics

Molecular dynamics (MD) simulations are vital for exploring complex systems in computational physics and chemistry. While machine learning methods dramatically reduce computational costs relative to ab initio methods, their accuracy in long-lasting simulations remains limited. Here we propose dynamic training (DT), a method designed to enhance accuracy of a model over extended MD simulations. Applying DT to an equivariant graph neural network (EGNN) on the challenging system of a hydrogen molecule interacting with a palladium cluster anchored to a graphene vacancy demonstrates a superior prediction accuracy compared to conventional approaches. Crucially, the DT architecture-independent design ensures its applicability across diverse machine learning potentials, making it a practical tool for advancing MD simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信