球面采样快速HARDI不确定度定量与可视化

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tark Patel, Tushar M. Athawale, Timbwaoga A. J. Ouermi, Chris R. Johnson
{"title":"球面采样快速HARDI不确定度定量与可视化","authors":"Tark Patel,&nbsp;Tushar M. Athawale,&nbsp;Timbwaoga A. J. Ouermi,&nbsp;Chris R. Johnson","doi":"10.1111/cgf.70138","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we study uncertainty quantification and visualization of orientation distribution functions (ODF), which corresponds to the diffusion profile of high angular resolution diffusion imaging (HARDI) data. The shape inclusion probability (SIP) function is the state-of-the-art method for capturing the uncertainty of ODF ensembles. The current method of computing the SIP function with a volumetric basis exhibits high computational and memory costs, which can be a bottleneck to integrating uncertainty into HARDI visualization techniques and tools. We propose a novel spherical sampling framework for faster computation of the SIP function with lower memory usage and increased accuracy. In particular, we propose direct extraction of SIP isosurfaces, which represent confidence intervals indicating spatial uncertainty of HARDI glyphs, by performing spherical sampling of ODFs. Our spherical sampling approach requires much less sampling than the state-of-the-art volume sampling method, thus providing significantly enhanced performance, scalability, and the ability to perform implicit ray tracing. Our experiments demonstrate that the SIP isosurfaces extracted with our spherical sampling approach can achieve up to 8164× speedup, 37282× memory reduction, and 50.2% less SIP isosurface error compared to the classical volume sampling approach. We demonstrate the efficacy of our methods through experiments on synthetic and human-brain HARDI datasets.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70138","citationCount":"0","resultStr":"{\"title\":\"Fast HARDI Uncertainty Quantification and Visualization with Spherical Sampling\",\"authors\":\"Tark Patel,&nbsp;Tushar M. Athawale,&nbsp;Timbwaoga A. J. Ouermi,&nbsp;Chris R. Johnson\",\"doi\":\"10.1111/cgf.70138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we study uncertainty quantification and visualization of orientation distribution functions (ODF), which corresponds to the diffusion profile of high angular resolution diffusion imaging (HARDI) data. The shape inclusion probability (SIP) function is the state-of-the-art method for capturing the uncertainty of ODF ensembles. The current method of computing the SIP function with a volumetric basis exhibits high computational and memory costs, which can be a bottleneck to integrating uncertainty into HARDI visualization techniques and tools. We propose a novel spherical sampling framework for faster computation of the SIP function with lower memory usage and increased accuracy. In particular, we propose direct extraction of SIP isosurfaces, which represent confidence intervals indicating spatial uncertainty of HARDI glyphs, by performing spherical sampling of ODFs. Our spherical sampling approach requires much less sampling than the state-of-the-art volume sampling method, thus providing significantly enhanced performance, scalability, and the ability to perform implicit ray tracing. Our experiments demonstrate that the SIP isosurfaces extracted with our spherical sampling approach can achieve up to 8164× speedup, 37282× memory reduction, and 50.2% less SIP isosurface error compared to the classical volume sampling approach. We demonstrate the efficacy of our methods through experiments on synthetic and human-brain HARDI datasets.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70138\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70138\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70138","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与高角分辨率扩散成像(HARDI)数据的扩散剖面相对应的定向分布函数(ODF)的不确定性量化和可视化。形状包含概率(SIP)函数是捕获ODF系综不确定性的最先进方法。当前以体积为基础计算SIP函数的方法具有较高的计算和内存成本,这可能成为将不确定性集成到HARDI可视化技术和工具中的瓶颈。我们提出了一种新的球形采样框架,以更快的速度计算SIP函数,降低内存使用和提高精度。特别是,我们建议通过对odf进行球面采样来直接提取SIP等值面,这代表了表明HARDI符号空间不确定性的置信区间。我们的球面采样方法比最先进的体积采样方法需要更少的采样,从而提供显着增强的性能,可扩展性和执行隐式光线跟踪的能力。实验表明,与传统的体积采样方法相比,采用球形采样方法提取的SIP等面可以实现高达8164倍的加速,37282倍的内存减少和50.2%的SIP等面误差。我们通过在合成和人脑HARDI数据集上的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast HARDI Uncertainty Quantification and Visualization with Spherical Sampling

Fast HARDI Uncertainty Quantification and Visualization with Spherical Sampling

In this paper, we study uncertainty quantification and visualization of orientation distribution functions (ODF), which corresponds to the diffusion profile of high angular resolution diffusion imaging (HARDI) data. The shape inclusion probability (SIP) function is the state-of-the-art method for capturing the uncertainty of ODF ensembles. The current method of computing the SIP function with a volumetric basis exhibits high computational and memory costs, which can be a bottleneck to integrating uncertainty into HARDI visualization techniques and tools. We propose a novel spherical sampling framework for faster computation of the SIP function with lower memory usage and increased accuracy. In particular, we propose direct extraction of SIP isosurfaces, which represent confidence intervals indicating spatial uncertainty of HARDI glyphs, by performing spherical sampling of ODFs. Our spherical sampling approach requires much less sampling than the state-of-the-art volume sampling method, thus providing significantly enhanced performance, scalability, and the ability to perform implicit ray tracing. Our experiments demonstrate that the SIP isosurfaces extracted with our spherical sampling approach can achieve up to 8164× speedup, 37282× memory reduction, and 50.2% less SIP isosurface error compared to the classical volume sampling approach. We demonstrate the efficacy of our methods through experiments on synthetic and human-brain HARDI datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信