{"title":"Sca2Gri:可伸缩的网格化散点图","authors":"S. Frey","doi":"10.1111/cgf.70141","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Scatterplots are widely used in exploratory data analysis. Representing data points as glyphs is often crucial for in-depth investigation, but this can lead to significant overlap and visual clutter. Recent post-processing techniques address this issue, but their computational and/or visual scalability is generally limited to thousands of points and unable to effectively deal with large datasets in the order of millions. This paper introduces Sca<sup>2</sup>Gri (Scalable Gridified Scatterplots), a grid-based post-processing method designed for analysis scenarios where the number of data points substantially exceeds the number of glyphs that can be reasonably displayed. Sca<sup>2</sup>Gri enables interactive grid generation for large datasets, offering flexible user control of glyph size, maximum displacement for point to cell mapping, and scatterplot focus area. While Sca<sup>2</sup>Gri's computational complexity scales cubically with the number of cells (which is practically bound to thousands for legible glyph sizes), its complexity is linear with respect to the number of data points, making it highly scalable beyond millions of points.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70141","citationCount":"0","resultStr":"{\"title\":\"Sca2Gri: Scalable Gridified Scatterplots\",\"authors\":\"S. Frey\",\"doi\":\"10.1111/cgf.70141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Scatterplots are widely used in exploratory data analysis. Representing data points as glyphs is often crucial for in-depth investigation, but this can lead to significant overlap and visual clutter. Recent post-processing techniques address this issue, but their computational and/or visual scalability is generally limited to thousands of points and unable to effectively deal with large datasets in the order of millions. This paper introduces Sca<sup>2</sup>Gri (Scalable Gridified Scatterplots), a grid-based post-processing method designed for analysis scenarios where the number of data points substantially exceeds the number of glyphs that can be reasonably displayed. Sca<sup>2</sup>Gri enables interactive grid generation for large datasets, offering flexible user control of glyph size, maximum displacement for point to cell mapping, and scatterplot focus area. While Sca<sup>2</sup>Gri's computational complexity scales cubically with the number of cells (which is practically bound to thousands for legible glyph sizes), its complexity is linear with respect to the number of data points, making it highly scalable beyond millions of points.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70141\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70141\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70141","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Scatterplots are widely used in exploratory data analysis. Representing data points as glyphs is often crucial for in-depth investigation, but this can lead to significant overlap and visual clutter. Recent post-processing techniques address this issue, but their computational and/or visual scalability is generally limited to thousands of points and unable to effectively deal with large datasets in the order of millions. This paper introduces Sca2Gri (Scalable Gridified Scatterplots), a grid-based post-processing method designed for analysis scenarios where the number of data points substantially exceeds the number of glyphs that can be reasonably displayed. Sca2Gri enables interactive grid generation for large datasets, offering flexible user control of glyph size, maximum displacement for point to cell mapping, and scatterplot focus area. While Sca2Gri's computational complexity scales cubically with the number of cells (which is practically bound to thousands for legible glyph sizes), its complexity is linear with respect to the number of data points, making it highly scalable beyond millions of points.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.