分数阶Schrödinger框架下双双曲势量子信息熵的探索

IF 2 3区 化学 Q3 CHEMISTRY, PHYSICAL
David Maya-Franco, Emmanuel Martínez-Guerrero, Guo-Hua Sun, Shi-Hai Dong
{"title":"分数阶Schrödinger框架下双双曲势量子信息熵的探索","authors":"David Maya-Franco,&nbsp;Emmanuel Martínez-Guerrero,&nbsp;Guo-Hua Sun,&nbsp;Shi-Hai Dong","doi":"10.1002/qua.70086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we investigate quantum information entropy for double hyperbolic well potentials within the framework of the fractional Schrödinger equation (FSE). Specifically, we analyze the position and momentum Shannon entropies for two hyperbolic potentials, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>U</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {U}_1 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>U</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {U}_2 $$</annotation>\n </semantics></math>, as a function of the fractional derivative order <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>. Our findings reveal that decreasing <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math> enhances wave function localization in position space, thereby reducing spatial uncertainty while simultaneously increasing momentum uncertainty. We confirm the validity of the Beckner–Bialynicki-Birula–Mycielski inequality for both potentials, demonstrating its robustness across different degrees of nonlocality. Furthermore, we explore the behavior of Fisher information, observing that it increases in position space while decreases in momentum space as the well depths grow.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 15","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Quantum Information Entropy in Double Hyperbolic Potentials Under the Fractional Schrödinger Framework\",\"authors\":\"David Maya-Franco,&nbsp;Emmanuel Martínez-Guerrero,&nbsp;Guo-Hua Sun,&nbsp;Shi-Hai Dong\",\"doi\":\"10.1002/qua.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this work, we investigate quantum information entropy for double hyperbolic well potentials within the framework of the fractional Schrödinger equation (FSE). Specifically, we analyze the position and momentum Shannon entropies for two hyperbolic potentials, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>U</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {U}_1 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>U</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {U}_2 $$</annotation>\\n </semantics></math>, as a function of the fractional derivative order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>. Our findings reveal that decreasing <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math> enhances wave function localization in position space, thereby reducing spatial uncertainty while simultaneously increasing momentum uncertainty. We confirm the validity of the Beckner–Bialynicki-Birula–Mycielski inequality for both potentials, demonstrating its robustness across different degrees of nonlocality. Furthermore, we explore the behavior of Fisher information, observing that it increases in position space while decreases in momentum space as the well depths grow.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 15\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70086\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70086","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们在分数阶Schrödinger方程(FSE)的框架内研究了双双曲阱势的量子信息熵。具体来说,我们分析了两个双曲势的位置和动量香农熵,u1 $$ {U}_1 $$和u2$$ {U}_2 $$,作为分数阶导数阶μ $$ \mu $$的函数。研究结果表明,μ $$ \mu $$的减小增强了波函数在位置空间中的局部化,从而减少了空间不确定性,同时增加了动量不确定性。我们证实了Beckner-Bialynicki-Birula-Mycielski不等式对两种势的有效性,证明了它在不同程度的非定域下的鲁棒性。此外,我们还研究了Fisher信息的行为,观察到随着井深的增加,它在位置空间中增加,而在动量空间中减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Quantum Information Entropy in Double Hyperbolic Potentials Under the Fractional Schrödinger Framework

Exploring Quantum Information Entropy in Double Hyperbolic Potentials Under the Fractional Schrödinger Framework

In this work, we investigate quantum information entropy for double hyperbolic well potentials within the framework of the fractional Schrödinger equation (FSE). Specifically, we analyze the position and momentum Shannon entropies for two hyperbolic potentials, U 1 $$ {U}_1 $$ and U 2 $$ {U}_2 $$ , as a function of the fractional derivative order μ $$ \mu $$ . Our findings reveal that decreasing μ $$ \mu $$ enhances wave function localization in position space, thereby reducing spatial uncertainty while simultaneously increasing momentum uncertainty. We confirm the validity of the Beckner–Bialynicki-Birula–Mycielski inequality for both potentials, demonstrating its robustness across different degrees of nonlocality. Furthermore, we explore the behavior of Fisher information, observing that it increases in position space while decreases in momentum space as the well depths grow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信