Jacob Miller, Dhruv Bhatia, Helen Purchase, Stephen Kobourov
{"title":"欧几里得,双曲,和球形网络:匹配网络结构的实证研究,以最佳的可视化","authors":"Jacob Miller, Dhruv Bhatia, Helen Purchase, Stephen Kobourov","doi":"10.1111/cgf.70126","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We investigate the usability of Euclidean, spherical and hyperbolic geometries for network visualization. Several techniques have been proposed for both spherical and hyperbolic network visualization tools, based on the fact that some networks admit lower embedding error (distortion) in such non-Euclidean geometries. However, it is not yet known whether a lower embedding error translates to human subject benefits, e.g., better task accuracy or lower task completion time. We design, implement, conduct, and analyze a human subjects study to compare Euclidean, spherical and hyperbolic network visualizations using tasks that span the network task taxonomy. While in some cases accuracy and response times are negatively impacted when using non-Euclidean visualizations, the evaluation shows that differences in accuracy for hyperbolic and spherical visualizations are not statistically significant when compared to Euclidean visualizations. Additionally, differences in response times for spherical visualizations are not statistically significant compared to Euclidean visualizations.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70126","citationCount":"0","resultStr":"{\"title\":\"Euclidean, Hyperbolic, and Spherical Networks: An Empirical Study of Matching Network Structure to Best Visualizations\",\"authors\":\"Jacob Miller, Dhruv Bhatia, Helen Purchase, Stephen Kobourov\",\"doi\":\"10.1111/cgf.70126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We investigate the usability of Euclidean, spherical and hyperbolic geometries for network visualization. Several techniques have been proposed for both spherical and hyperbolic network visualization tools, based on the fact that some networks admit lower embedding error (distortion) in such non-Euclidean geometries. However, it is not yet known whether a lower embedding error translates to human subject benefits, e.g., better task accuracy or lower task completion time. We design, implement, conduct, and analyze a human subjects study to compare Euclidean, spherical and hyperbolic network visualizations using tasks that span the network task taxonomy. While in some cases accuracy and response times are negatively impacted when using non-Euclidean visualizations, the evaluation shows that differences in accuracy for hyperbolic and spherical visualizations are not statistically significant when compared to Euclidean visualizations. Additionally, differences in response times for spherical visualizations are not statistically significant compared to Euclidean visualizations.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70126\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70126\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Euclidean, Hyperbolic, and Spherical Networks: An Empirical Study of Matching Network Structure to Best Visualizations
We investigate the usability of Euclidean, spherical and hyperbolic geometries for network visualization. Several techniques have been proposed for both spherical and hyperbolic network visualization tools, based on the fact that some networks admit lower embedding error (distortion) in such non-Euclidean geometries. However, it is not yet known whether a lower embedding error translates to human subject benefits, e.g., better task accuracy or lower task completion time. We design, implement, conduct, and analyze a human subjects study to compare Euclidean, spherical and hyperbolic network visualizations using tasks that span the network task taxonomy. While in some cases accuracy and response times are negatively impacted when using non-Euclidean visualizations, the evaluation shows that differences in accuracy for hyperbolic and spherical visualizations are not statistically significant when compared to Euclidean visualizations. Additionally, differences in response times for spherical visualizations are not statistically significant compared to Euclidean visualizations.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.