I. Pérez-Messina, M. Angelini, D. Ceneda, C. Tominski, S. Miksch
{"title":"可视化分析中的耦合引导和进步性","authors":"I. Pérez-Messina, M. Angelini, D. Ceneda, C. Tominski, S. Miksch","doi":"10.1111/cgf.70115","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Data size and complexity in Visual Analytics (VA)pose significant challenges for VA systems andVA users. Two recent developments address these challenges: progressive VA (PVA) and guidance for VA (GVA). Both share the goal of supporting the analysis flow. PVA primarily considers the system perspective and incrementally generates partial results during long computations to avoid an unresponsive VA system. GVA is primarily concerned with the user perspective and strives to mitigate knowledge gaps during VA activities to prevent the analysis from stalling. Although PVA and GVA share the same goal, it has not yet been studied how PVA and GVA can join forces to achieve it. Our paper investigates this in detail. We structure our research around two questions: How can guidance enhance PVA and how can progressiveness enhance GVA? This leads to two main themes: Guidance for Progressiveness (G4P) and Progressiveness for Guidance (P4G). By exploring both themes, we arrive at a conceptual model of how progressiveness and guidance can work together. We illustrate the practical value of our theoretical considerations in two case studies ofG4P and P4G.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70115","citationCount":"0","resultStr":"{\"title\":\"Coupling Guidance and Progressiveness in Visual Analytics\",\"authors\":\"I. Pérez-Messina, M. Angelini, D. Ceneda, C. Tominski, S. Miksch\",\"doi\":\"10.1111/cgf.70115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Data size and complexity in Visual Analytics (VA)pose significant challenges for VA systems andVA users. Two recent developments address these challenges: progressive VA (PVA) and guidance for VA (GVA). Both share the goal of supporting the analysis flow. PVA primarily considers the system perspective and incrementally generates partial results during long computations to avoid an unresponsive VA system. GVA is primarily concerned with the user perspective and strives to mitigate knowledge gaps during VA activities to prevent the analysis from stalling. Although PVA and GVA share the same goal, it has not yet been studied how PVA and GVA can join forces to achieve it. Our paper investigates this in detail. We structure our research around two questions: How can guidance enhance PVA and how can progressiveness enhance GVA? This leads to two main themes: Guidance for Progressiveness (G4P) and Progressiveness for Guidance (P4G). By exploring both themes, we arrive at a conceptual model of how progressiveness and guidance can work together. We illustrate the practical value of our theoretical considerations in two case studies ofG4P and P4G.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70115\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70115\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70115","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Coupling Guidance and Progressiveness in Visual Analytics
Data size and complexity in Visual Analytics (VA)pose significant challenges for VA systems andVA users. Two recent developments address these challenges: progressive VA (PVA) and guidance for VA (GVA). Both share the goal of supporting the analysis flow. PVA primarily considers the system perspective and incrementally generates partial results during long computations to avoid an unresponsive VA system. GVA is primarily concerned with the user perspective and strives to mitigate knowledge gaps during VA activities to prevent the analysis from stalling. Although PVA and GVA share the same goal, it has not yet been studied how PVA and GVA can join forces to achieve it. Our paper investigates this in detail. We structure our research around two questions: How can guidance enhance PVA and how can progressiveness enhance GVA? This leads to two main themes: Guidance for Progressiveness (G4P) and Progressiveness for Guidance (P4G). By exploring both themes, we arrive at a conceptual model of how progressiveness and guidance can work together. We illustrate the practical value of our theoretical considerations in two case studies ofG4P and P4G.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.