数据科学中的人工智能:评估亚马逊流域太阳能预测模型

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
André Luis Ferreira Marques;Ricardo Sbragio;Pedro Luiz Pizzigatti Corrêa;Marcelo Ramos Martins
{"title":"数据科学中的人工智能:评估亚马逊流域太阳能预测模型","authors":"André Luis Ferreira Marques;Ricardo Sbragio;Pedro Luiz Pizzigatti Corrêa;Marcelo Ramos Martins","doi":"10.1109/ACCESS.2025.3589275","DOIUrl":null,"url":null,"abstract":"Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods—integrated with Universal Kriging and Holt-Winters (time series) models — to forecast solar irradiance (kWh/m2) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"125066-125079"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080416","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Data Science: Evaluating Forecasting Models for Solar Energy in the Amazon Basin\",\"authors\":\"André Luis Ferreira Marques;Ricardo Sbragio;Pedro Luiz Pizzigatti Corrêa;Marcelo Ramos Martins\",\"doi\":\"10.1109/ACCESS.2025.3589275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods—integrated with Universal Kriging and Holt-Winters (time series) models — to forecast solar irradiance (kWh/m2) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"125066-125079\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080416/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11080416/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

采用机器学习(ML)和深度学习(DL)的预测模型已经成为评估可再生能源系统技术可行性的基础。其中,太阳能作为一种可再生能源脱颖而出,尤其与支持保护亚马逊雨林有关。本研究引入了一种新的方法,使用ML和DL方法,结合通用克里格和霍尔特-温特斯(时间序列)模型,来预测亚马逊州各城市的太阳辐照度(kWh/m2)。该分析以数据科学周期为基础,输入数据来自地面站和卫星产品。对三个代表性城市的短期(提前一至三天)预测效果进行了评估。在不同预测层位和城市,混合模式的MAPE值在18.1% ~ 26.6%之间。这些结果与现有文献一致,并加强了先进的ML/DL方法在高度可变和具有挑战性的环境(如亚马逊盆地)中用于太阳能预测的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in Data Science: Evaluating Forecasting Models for Solar Energy in the Amazon Basin
Forecasting models employing machine learning (ML) and deep learning (DL) have become fundamental for assessing the technical feasibility of renewable energy systems. Among these, solar energy stands out as a renewable energy option, particularly relevant for supporting the preservation of the Amazon rainforest. This study introduces a novel approach using ML and DL methods—integrated with Universal Kriging and Holt-Winters (time series) models — to forecast solar irradiance (kWh/m2) in cities across the state of Amazonas. The analysis is grounded in the Data Science cycle, with input data sourced from both ground stations and satellite products. Forecasting performance was evaluated for short-term horizons (one to three days ahead) across three representative cities. The hybrid SARIMAX-CNN-LSTM, SARIMAX-CNN-Transformer, and SARIMAX-TCN models achieved MAPE values ranging from 18.1% to 26.6% for the different forecast horizons and cities. These results are consistent with existing literature and reinforce the suitability of advanced ML/DL approaches for solar energy forecasting in highly variable and challenging environments such as the Amazon Basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信