Jinpeng Lv , Kun Zou , Chuanwei Yin , Wenhui Xu , Duo Meng , Huansha Zhang , Wenhao Yu , Peiwen Jiang , Changjun Yun , Hui Xue , Nan Hu , Rongyin Gao
{"title":"大豆苷通过ERK和AKT信号通路介导MITF蛋白酶体降解抑制黑素形成","authors":"Jinpeng Lv , Kun Zou , Chuanwei Yin , Wenhui Xu , Duo Meng , Huansha Zhang , Wenhao Yu , Peiwen Jiang , Changjun Yun , Hui Xue , Nan Hu , Rongyin Gao","doi":"10.1016/j.yexmp.2025.104986","DOIUrl":null,"url":null,"abstract":"<div><div>Daidzin, a prominent isoflavone found in soybeans, <em>Pueraria lobata</em>, and various legumes, has been extensively investigated for its diverse pharmacological activities, which include anticancer, antioxidant, anti-inflammatory, antiepileptic, and alcohol detoxification properties. Previous studies have shown that the dichloromethane fraction of <em>Pueraria lobata</em> stem (DCM-PLS) exhibits significant anti-melanogenic activity, with daidzin identified as the principal active compound. However, the precise role of daidzin in pigmentation remains incompletely understood. This study aimed to investigate the effects of daidzin on pigmentation and to elucidate the underlying mechanisms. Our findings revealed that daidzin not only inhibited basal melanin production but also reduced melanin synthesis induced by α-MSH, ACTH, and UV exposure. The effects of daidzin were primarily mediated through the activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) pathways. Upon activation, these pathways facilitated the ubiquitination and degradation of Melanocytes Inducing Transcription Factor (MITF), resulting in decreased expression of tyrosinase, TRP-1, and TRP-2, ultimately inhibiting melanogenesis. Importantly, our research further demonstrated that daidzin reduced pigmentation in both zebrafish and human skin explants, highlighting its potential application as a therapeutic approach for disorders related to skin pigmentation.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"143 ","pages":"Article 104986"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daidzin suppresses melanogenesis through ERK and AKT signaling pathways mediated MITF proteasomal degradation\",\"authors\":\"Jinpeng Lv , Kun Zou , Chuanwei Yin , Wenhui Xu , Duo Meng , Huansha Zhang , Wenhao Yu , Peiwen Jiang , Changjun Yun , Hui Xue , Nan Hu , Rongyin Gao\",\"doi\":\"10.1016/j.yexmp.2025.104986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Daidzin, a prominent isoflavone found in soybeans, <em>Pueraria lobata</em>, and various legumes, has been extensively investigated for its diverse pharmacological activities, which include anticancer, antioxidant, anti-inflammatory, antiepileptic, and alcohol detoxification properties. Previous studies have shown that the dichloromethane fraction of <em>Pueraria lobata</em> stem (DCM-PLS) exhibits significant anti-melanogenic activity, with daidzin identified as the principal active compound. However, the precise role of daidzin in pigmentation remains incompletely understood. This study aimed to investigate the effects of daidzin on pigmentation and to elucidate the underlying mechanisms. Our findings revealed that daidzin not only inhibited basal melanin production but also reduced melanin synthesis induced by α-MSH, ACTH, and UV exposure. The effects of daidzin were primarily mediated through the activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) pathways. Upon activation, these pathways facilitated the ubiquitination and degradation of Melanocytes Inducing Transcription Factor (MITF), resulting in decreased expression of tyrosinase, TRP-1, and TRP-2, ultimately inhibiting melanogenesis. Importantly, our research further demonstrated that daidzin reduced pigmentation in both zebrafish and human skin explants, highlighting its potential application as a therapeutic approach for disorders related to skin pigmentation.</div></div>\",\"PeriodicalId\":12176,\"journal\":{\"name\":\"Experimental and molecular pathology\",\"volume\":\"143 \",\"pages\":\"Article 104986\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and molecular pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448002500036X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448002500036X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Daidzin suppresses melanogenesis through ERK and AKT signaling pathways mediated MITF proteasomal degradation
Daidzin, a prominent isoflavone found in soybeans, Pueraria lobata, and various legumes, has been extensively investigated for its diverse pharmacological activities, which include anticancer, antioxidant, anti-inflammatory, antiepileptic, and alcohol detoxification properties. Previous studies have shown that the dichloromethane fraction of Pueraria lobata stem (DCM-PLS) exhibits significant anti-melanogenic activity, with daidzin identified as the principal active compound. However, the precise role of daidzin in pigmentation remains incompletely understood. This study aimed to investigate the effects of daidzin on pigmentation and to elucidate the underlying mechanisms. Our findings revealed that daidzin not only inhibited basal melanin production but also reduced melanin synthesis induced by α-MSH, ACTH, and UV exposure. The effects of daidzin were primarily mediated through the activation of the extracellular signal-regulated protein kinase (ERK) and protein kinase B (AKT) pathways. Upon activation, these pathways facilitated the ubiquitination and degradation of Melanocytes Inducing Transcription Factor (MITF), resulting in decreased expression of tyrosinase, TRP-1, and TRP-2, ultimately inhibiting melanogenesis. Importantly, our research further demonstrated that daidzin reduced pigmentation in both zebrafish and human skin explants, highlighting its potential application as a therapeutic approach for disorders related to skin pigmentation.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.