Dongming Xue , Liyue Zhou , Tianxia Sun , Fang Hui , Yuming Wang , Jie Li , Ge Hui , Yu Zhao
{"title":"梅花鹿胸腺蛋白酶α原蛋白的表达、纯化及活性研究","authors":"Dongming Xue , Liyue Zhou , Tianxia Sun , Fang Hui , Yuming Wang , Jie Li , Ge Hui , Yu Zhao","doi":"10.1016/j.pep.2025.106782","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To perform the prokaryotic expression and purification of sika deer prothymosin α (PTMA) protein and lay a foundation for the subsequent study of PTMA protein activity.</div></div><div><h3>Methods</h3><div>The PTMA fragment was synthesized and cloned into the pET21a-PTMA vector. <em>Escherichia coli</em> BL21 (DE3) was used for the prokaryotic expression of the PTMA protein, and the expression products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nickel-containing electrophoresis. Polyacrylamide gel electrophoresis was conducted to analyze the expression products, which were purified using nickel ion affinity chromatography. Fragments were identified using mass spectrometry and analyzed for activity in MC3T3-E1 and ATDC5 cells.</div></div><div><h3>Results</h3><div>The pET21a-PTMA expression vector was successfully constructed, and the protein purity reached more than 93 %. The purified protein displayed proliferative activity in both MC3T3-E1 and ATDC5 cells.</div></div><div><h3>Conclusion</h3><div>The successful construction of a stable expression vector and production of high-purity protein lay a foundation for future research on PTMA activity and its effects on bone diseases.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"235 ","pages":"Article 106782"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression, purification, and activity of sika deer prothymosin α protein\",\"authors\":\"Dongming Xue , Liyue Zhou , Tianxia Sun , Fang Hui , Yuming Wang , Jie Li , Ge Hui , Yu Zhao\",\"doi\":\"10.1016/j.pep.2025.106782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To perform the prokaryotic expression and purification of sika deer prothymosin α (PTMA) protein and lay a foundation for the subsequent study of PTMA protein activity.</div></div><div><h3>Methods</h3><div>The PTMA fragment was synthesized and cloned into the pET21a-PTMA vector. <em>Escherichia coli</em> BL21 (DE3) was used for the prokaryotic expression of the PTMA protein, and the expression products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nickel-containing electrophoresis. Polyacrylamide gel electrophoresis was conducted to analyze the expression products, which were purified using nickel ion affinity chromatography. Fragments were identified using mass spectrometry and analyzed for activity in MC3T3-E1 and ATDC5 cells.</div></div><div><h3>Results</h3><div>The pET21a-PTMA expression vector was successfully constructed, and the protein purity reached more than 93 %. The purified protein displayed proliferative activity in both MC3T3-E1 and ATDC5 cells.</div></div><div><h3>Conclusion</h3><div>The successful construction of a stable expression vector and production of high-purity protein lay a foundation for future research on PTMA activity and its effects on bone diseases.</div></div>\",\"PeriodicalId\":20757,\"journal\":{\"name\":\"Protein expression and purification\",\"volume\":\"235 \",\"pages\":\"Article 106782\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein expression and purification\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104659282500124X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104659282500124X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Expression, purification, and activity of sika deer prothymosin α protein
Objective
To perform the prokaryotic expression and purification of sika deer prothymosin α (PTMA) protein and lay a foundation for the subsequent study of PTMA protein activity.
Methods
The PTMA fragment was synthesized and cloned into the pET21a-PTMA vector. Escherichia coli BL21 (DE3) was used for the prokaryotic expression of the PTMA protein, and the expression products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nickel-containing electrophoresis. Polyacrylamide gel electrophoresis was conducted to analyze the expression products, which were purified using nickel ion affinity chromatography. Fragments were identified using mass spectrometry and analyzed for activity in MC3T3-E1 and ATDC5 cells.
Results
The pET21a-PTMA expression vector was successfully constructed, and the protein purity reached more than 93 %. The purified protein displayed proliferative activity in both MC3T3-E1 and ATDC5 cells.
Conclusion
The successful construction of a stable expression vector and production of high-purity protein lay a foundation for future research on PTMA activity and its effects on bone diseases.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.