DynaKey-GNN:一种用于交通流时空预测的高效动态关键节点多图神经网络

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Guangrui Fan , Aznul Qalid Md Sabri , Siti Soraya Abdul Rahman , Lihu Pan
{"title":"DynaKey-GNN:一种用于交通流时空预测的高效动态关键节点多图神经网络","authors":"Guangrui Fan ,&nbsp;Aznul Qalid Md Sabri ,&nbsp;Siti Soraya Abdul Rahman ,&nbsp;Lihu Pan","doi":"10.1016/j.engappai.2025.111757","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic flow prediction is crucial for effective management of urban transportation but remains challenging due to rapidly changing network conditions. We introduce a dynamic key-node multi-graph neural network (DynaKey-GNN) that identifies both long-term vital nodes and short-term critical nodes, enabling real-time adaptation to traffic shifts. An incremental update strategy selectively processes network changes, boosting computational efficiency without sacrificing accuracy. We also propose a dual-stream architecture that fuses global patterns with targeted key-node processing, capturing both stable and fast-evolving dependencies. Experiments on four real-world traffic datasets show that our approach achieves up to 12.37% higher accuracy than state-of-the-art baselines under dynamic scenarios. Case studies on volatile nodes further confirm the model’s ability to handle abrupt fluctuations in traffic flow, providing consistent and reliable forecasts.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111757"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DynaKey-GNN: An efficient dynamic key-node multi-graph neural network for spatio-temporal traffic flow forecasting\",\"authors\":\"Guangrui Fan ,&nbsp;Aznul Qalid Md Sabri ,&nbsp;Siti Soraya Abdul Rahman ,&nbsp;Lihu Pan\",\"doi\":\"10.1016/j.engappai.2025.111757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate traffic flow prediction is crucial for effective management of urban transportation but remains challenging due to rapidly changing network conditions. We introduce a dynamic key-node multi-graph neural network (DynaKey-GNN) that identifies both long-term vital nodes and short-term critical nodes, enabling real-time adaptation to traffic shifts. An incremental update strategy selectively processes network changes, boosting computational efficiency without sacrificing accuracy. We also propose a dual-stream architecture that fuses global patterns with targeted key-node processing, capturing both stable and fast-evolving dependencies. Experiments on four real-world traffic datasets show that our approach achieves up to 12.37% higher accuracy than state-of-the-art baselines under dynamic scenarios. Case studies on volatile nodes further confirm the model’s ability to handle abrupt fluctuations in traffic flow, providing consistent and reliable forecasts.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"159 \",\"pages\":\"Article 111757\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625017592\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625017592","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确的交通流预测对于有效管理城市交通至关重要,但由于网络条件的快速变化,仍然具有挑战性。我们引入了一个动态关键节点多图神经网络(DynaKey-GNN),它可以识别长期关键节点和短期关键节点,从而实时适应交通变化。增量更新策略选择性地处理网络变化,在不牺牲准确性的情况下提高计算效率。我们还提出了一种双流架构,它将全局模式与目标关键节点处理融合在一起,捕获稳定和快速发展的依赖关系。在四个真实交通数据集上的实验表明,在动态场景下,我们的方法比最先进的基线准确率高出12.37%。对波动节点的案例研究进一步证实了该模型处理交通流量突然波动的能力,提供了一致和可靠的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DynaKey-GNN: An efficient dynamic key-node multi-graph neural network for spatio-temporal traffic flow forecasting
Accurate traffic flow prediction is crucial for effective management of urban transportation but remains challenging due to rapidly changing network conditions. We introduce a dynamic key-node multi-graph neural network (DynaKey-GNN) that identifies both long-term vital nodes and short-term critical nodes, enabling real-time adaptation to traffic shifts. An incremental update strategy selectively processes network changes, boosting computational efficiency without sacrificing accuracy. We also propose a dual-stream architecture that fuses global patterns with targeted key-node processing, capturing both stable and fast-evolving dependencies. Experiments on four real-world traffic datasets show that our approach achieves up to 12.37% higher accuracy than state-of-the-art baselines under dynamic scenarios. Case studies on volatile nodes further confirm the model’s ability to handle abrupt fluctuations in traffic flow, providing consistent and reliable forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信