用于二次非质子电池的无阳极锂金属负极

Antonio Santagata , Maria Lucia Pace , Daniele Maria Trucchi , Mariangela Curcio , Angela De Bonis , Roberto Teghil , Nicholas Carboni , Andrea Gentile , Arianna Sette , Luca Mesina , Andrea Ceppetelli , Laura Silvestri , Paola Gislon , Giuseppe Antonio Elia , Marisa Falco , Gabriele Lingua , Claudio Gerbaldi , Maria Assunta Navarra , Marco Agostini , Sergio Brutti
{"title":"用于二次非质子电池的无阳极锂金属负极","authors":"Antonio Santagata ,&nbsp;Maria Lucia Pace ,&nbsp;Daniele Maria Trucchi ,&nbsp;Mariangela Curcio ,&nbsp;Angela De Bonis ,&nbsp;Roberto Teghil ,&nbsp;Nicholas Carboni ,&nbsp;Andrea Gentile ,&nbsp;Arianna Sette ,&nbsp;Luca Mesina ,&nbsp;Andrea Ceppetelli ,&nbsp;Laura Silvestri ,&nbsp;Paola Gislon ,&nbsp;Giuseppe Antonio Elia ,&nbsp;Marisa Falco ,&nbsp;Gabriele Lingua ,&nbsp;Claudio Gerbaldi ,&nbsp;Maria Assunta Navarra ,&nbsp;Marco Agostini ,&nbsp;Sergio Brutti","doi":"10.1016/j.fub.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synergistic application of optimized laser-induced periodic surface structure (LIPSS) patterning conducted under ambient conditions and the deposition of an artificial solid-state electrolyte (aSEI) for the fabrication of a novel lithium-less lithium metal electrode (L<sup>3</sup>ME) utilizing stainless steel (SS). The composite anode-less substrate demonstrates the capability to facilitate the reversible plating and stripping of metallic lithium over several hundred cycles in aprotic battery systems. The LIPSS technique generates a patterned surface characterized by micrometer-long ripples with a lateral periodicity ranging from 150 to 250 nm, whereas the deposition of the aSEI results in a uniform and smooth surface morphology achieved through the homogeneous dispersion of a polymeric-inorganic composite film. This research unveils, for the first time in the literature, the synergistic combination of laser patterning and aSEI pre-deposition, thereby advancing current methodologies for anode-less electrode fabrication. An extensive analysis was conducted on varying LIPSS patterning conditions and aSEI compositions to assess their implications on electrochemical performance. The constructed L<sup>3</sup>ME comprises a stainless steel thin foil featuring a mesostructured surface marked by a regular distribution of iron (Fe) and iron oxide (Fe<sub>2</sub>O<sub>3</sub>) ripples. This structured surface is seamlessly integrated beneath a uniform polyethylene oxide and lithium nitrate composite film, allowing for the manufacture, handling, and storage of L<sup>3</sup>ME substrates in dry air, eliminating the necessity for inert atmosphere conditions. The optimized L<sup>3</sup>ME electrodes exhibit remarkable performance in aprotic lithium cells, facilitating fully reversible metallic lithium stripping and deposition, with exceptionally high coulombic efficiencies nearing 100 % over numerous cycles across various galvanostatic conditions that adhere to commercial standards (current densities of 0.25–1.25 mA cm<sup>−2</sup> and areal capacity limits from 0.5 to 5 mAh cm<sup>−2</sup>). Comparative benchmarking of L<sup>3</sup>ME performance against bare copper electrodes and other anode-less substrates highlights the distinctive efficacy of the combined LIPSS and aSEI technique in enhancing the reversibility of lithium plating and stripping through a selective inhibition of electrochemical lithium dissolution.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"7 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards anode-less lithium metal negative electrodes for secondary aprotic batteries\",\"authors\":\"Antonio Santagata ,&nbsp;Maria Lucia Pace ,&nbsp;Daniele Maria Trucchi ,&nbsp;Mariangela Curcio ,&nbsp;Angela De Bonis ,&nbsp;Roberto Teghil ,&nbsp;Nicholas Carboni ,&nbsp;Andrea Gentile ,&nbsp;Arianna Sette ,&nbsp;Luca Mesina ,&nbsp;Andrea Ceppetelli ,&nbsp;Laura Silvestri ,&nbsp;Paola Gislon ,&nbsp;Giuseppe Antonio Elia ,&nbsp;Marisa Falco ,&nbsp;Gabriele Lingua ,&nbsp;Claudio Gerbaldi ,&nbsp;Maria Assunta Navarra ,&nbsp;Marco Agostini ,&nbsp;Sergio Brutti\",\"doi\":\"10.1016/j.fub.2025.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the synergistic application of optimized laser-induced periodic surface structure (LIPSS) patterning conducted under ambient conditions and the deposition of an artificial solid-state electrolyte (aSEI) for the fabrication of a novel lithium-less lithium metal electrode (L<sup>3</sup>ME) utilizing stainless steel (SS). The composite anode-less substrate demonstrates the capability to facilitate the reversible plating and stripping of metallic lithium over several hundred cycles in aprotic battery systems. The LIPSS technique generates a patterned surface characterized by micrometer-long ripples with a lateral periodicity ranging from 150 to 250 nm, whereas the deposition of the aSEI results in a uniform and smooth surface morphology achieved through the homogeneous dispersion of a polymeric-inorganic composite film. This research unveils, for the first time in the literature, the synergistic combination of laser patterning and aSEI pre-deposition, thereby advancing current methodologies for anode-less electrode fabrication. An extensive analysis was conducted on varying LIPSS patterning conditions and aSEI compositions to assess their implications on electrochemical performance. The constructed L<sup>3</sup>ME comprises a stainless steel thin foil featuring a mesostructured surface marked by a regular distribution of iron (Fe) and iron oxide (Fe<sub>2</sub>O<sub>3</sub>) ripples. This structured surface is seamlessly integrated beneath a uniform polyethylene oxide and lithium nitrate composite film, allowing for the manufacture, handling, and storage of L<sup>3</sup>ME substrates in dry air, eliminating the necessity for inert atmosphere conditions. The optimized L<sup>3</sup>ME electrodes exhibit remarkable performance in aprotic lithium cells, facilitating fully reversible metallic lithium stripping and deposition, with exceptionally high coulombic efficiencies nearing 100 % over numerous cycles across various galvanostatic conditions that adhere to commercial standards (current densities of 0.25–1.25 mA cm<sup>−2</sup> and areal capacity limits from 0.5 to 5 mAh cm<sup>−2</sup>). Comparative benchmarking of L<sup>3</sup>ME performance against bare copper electrodes and other anode-less substrates highlights the distinctive efficacy of the combined LIPSS and aSEI technique in enhancing the reversibility of lithium plating and stripping through a selective inhibition of electrochemical lithium dissolution.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"7 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了在环境条件下进行的优化激光诱导周期性表面结构(LIPSS)图图化和人工固态电解质(aSEI)沉积的协同应用,以制造一种利用不锈钢(SS)的新型无锂锂金属电极(L3ME)。复合无阳极衬底证明了在非质子电池系统中,在数百个循环中促进金属锂的可逆镀和剥离的能力。LIPSS技术产生的图案表面具有微米长的波纹,横向周期性范围为150至250 nm,而aSEI的沉积通过聚合物-无机复合膜的均匀分散实现了均匀光滑的表面形貌。这项研究首次在文献中揭示了激光图像化和aSEI预沉积的协同结合,从而推进了目前无阳极电极制造的方法。对不同的LIPSS模式条件和aSEI成分进行了广泛的分析,以评估它们对电化学性能的影响。构建的L3ME包括不锈钢薄箔,其介观结构表面具有铁(Fe)和氧化铁(Fe2O3)波纹的规则分布。这种结构表面无缝集成在均匀的聚乙烯氧化物和硝酸锂复合薄膜下,允许在干燥空气中制造、处理和存储L3ME基板,消除了惰性气氛条件的必要性。优化后的L3ME电极在非质子锂电池中表现出卓越的性能,促进了完全可逆的金属锂剥离和沉积,在符合商业标准(电流密度为0.25-1.25 mA cm - 2,面积容量限制为0.5至5 mAh cm - 2)的各种电流条件下,在多次循环中具有接近100% %的超高库仑效率。L3ME与裸铜电极和其他无阳极衬底的性能对比表明,结合LIPSS和aSEI技术通过选择性抑制电化学锂溶解,提高了锂电镀和剥离的可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards anode-less lithium metal negative electrodes for secondary aprotic batteries
This study presents the synergistic application of optimized laser-induced periodic surface structure (LIPSS) patterning conducted under ambient conditions and the deposition of an artificial solid-state electrolyte (aSEI) for the fabrication of a novel lithium-less lithium metal electrode (L3ME) utilizing stainless steel (SS). The composite anode-less substrate demonstrates the capability to facilitate the reversible plating and stripping of metallic lithium over several hundred cycles in aprotic battery systems. The LIPSS technique generates a patterned surface characterized by micrometer-long ripples with a lateral periodicity ranging from 150 to 250 nm, whereas the deposition of the aSEI results in a uniform and smooth surface morphology achieved through the homogeneous dispersion of a polymeric-inorganic composite film. This research unveils, for the first time in the literature, the synergistic combination of laser patterning and aSEI pre-deposition, thereby advancing current methodologies for anode-less electrode fabrication. An extensive analysis was conducted on varying LIPSS patterning conditions and aSEI compositions to assess their implications on electrochemical performance. The constructed L3ME comprises a stainless steel thin foil featuring a mesostructured surface marked by a regular distribution of iron (Fe) and iron oxide (Fe2O3) ripples. This structured surface is seamlessly integrated beneath a uniform polyethylene oxide and lithium nitrate composite film, allowing for the manufacture, handling, and storage of L3ME substrates in dry air, eliminating the necessity for inert atmosphere conditions. The optimized L3ME electrodes exhibit remarkable performance in aprotic lithium cells, facilitating fully reversible metallic lithium stripping and deposition, with exceptionally high coulombic efficiencies nearing 100 % over numerous cycles across various galvanostatic conditions that adhere to commercial standards (current densities of 0.25–1.25 mA cm−2 and areal capacity limits from 0.5 to 5 mAh cm−2). Comparative benchmarking of L3ME performance against bare copper electrodes and other anode-less substrates highlights the distinctive efficacy of the combined LIPSS and aSEI technique in enhancing the reversibility of lithium plating and stripping through a selective inhibition of electrochemical lithium dissolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信