Simon Gaebel , Hüseyin Çelik , Dirk Berger , Christoph T. Koch , Michael Lehmann , Tolga Wagner
{"title":"接近一纳秒的时间分辨率的方波控制信号干扰门控","authors":"Simon Gaebel , Hüseyin Çelik , Dirk Berger , Christoph T. Koch , Michael Lehmann , Tolga Wagner","doi":"10.1016/j.ultramic.2025.114208","DOIUrl":null,"url":null,"abstract":"<div><div>Interference gating (iGate) has emerged as a valuable and instrumentally easy-to-implement technique for time-resolved electron holography, allowing the study of dynamic processes on the nanosecond scale. Traditionally, iGate has relied on noise-based control signals, which, while effective, present challenges in achieving high repetition rates due to the complexity of signal generation and transmission. In this work, a square-wave-based control signal for iGate is introduced, offering a simpler and more robust alternative. Experimental validation indicates that this approach maintains comparable performance to the noise-based signal while enabling an order-of-magnitude improvement in temporal resolution, reaching <span><math><mrow><mtext>1.9</mtext><mspace></mspace><mtext>ns</mtext></mrow></math></span> with our current instrumentation. This advancement holds promise for improved time-resolved investigations of ultrafast nanoscale phenomena in TEM, providing a low barrier to entry.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"277 ","pages":"Article 114208"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaching one nanosecond temporal resolution with square-wave-based control signals for interference gating\",\"authors\":\"Simon Gaebel , Hüseyin Çelik , Dirk Berger , Christoph T. Koch , Michael Lehmann , Tolga Wagner\",\"doi\":\"10.1016/j.ultramic.2025.114208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interference gating (iGate) has emerged as a valuable and instrumentally easy-to-implement technique for time-resolved electron holography, allowing the study of dynamic processes on the nanosecond scale. Traditionally, iGate has relied on noise-based control signals, which, while effective, present challenges in achieving high repetition rates due to the complexity of signal generation and transmission. In this work, a square-wave-based control signal for iGate is introduced, offering a simpler and more robust alternative. Experimental validation indicates that this approach maintains comparable performance to the noise-based signal while enabling an order-of-magnitude improvement in temporal resolution, reaching <span><math><mrow><mtext>1.9</mtext><mspace></mspace><mtext>ns</mtext></mrow></math></span> with our current instrumentation. This advancement holds promise for improved time-resolved investigations of ultrafast nanoscale phenomena in TEM, providing a low barrier to entry.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"277 \",\"pages\":\"Article 114208\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125001068\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125001068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Approaching one nanosecond temporal resolution with square-wave-based control signals for interference gating
Interference gating (iGate) has emerged as a valuable and instrumentally easy-to-implement technique for time-resolved electron holography, allowing the study of dynamic processes on the nanosecond scale. Traditionally, iGate has relied on noise-based control signals, which, while effective, present challenges in achieving high repetition rates due to the complexity of signal generation and transmission. In this work, a square-wave-based control signal for iGate is introduced, offering a simpler and more robust alternative. Experimental validation indicates that this approach maintains comparable performance to the noise-based signal while enabling an order-of-magnitude improvement in temporal resolution, reaching with our current instrumentation. This advancement holds promise for improved time-resolved investigations of ultrafast nanoscale phenomena in TEM, providing a low barrier to entry.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.