{"title":"d球上的扩散:周期性和惯性流形","authors":"Thieu Huy Nguyen, Thi Ngoc Ha Vu","doi":"10.1016/j.na.2025.113889","DOIUrl":null,"url":null,"abstract":"<div><div>On a <span><math><mi>d</mi></math></span>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we consider the diffusion equation of the form <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>♭</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>♯</mi></mrow></msup><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and Hodge Laplacian <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>. We prove the existence of a <span><math><mi>T</mi></math></span>-periodic solution to that equation under the action of a <span><math><mi>T</mi></math></span>-periodic external force <span><math><mi>g</mi></math></span>. Furthermore, we investigate the existence of an inertial manifold for the solutions nearby that periodic solution. The distribution of eigenvalues of Hodge Laplacian leads to the validity of the spectral gap condition yielding the existence of an inertial manifold.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113889"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion on d-sphere: Periodicity and inertial manifolds\",\"authors\":\"Thieu Huy Nguyen, Thi Ngoc Ha Vu\",\"doi\":\"10.1016/j.na.2025.113889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>On a <span><math><mi>d</mi></math></span>-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we consider the diffusion equation of the form <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>♭</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>♯</mi></mrow></msup><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and Hodge Laplacian <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>. We prove the existence of a <span><math><mi>T</mi></math></span>-periodic solution to that equation under the action of a <span><math><mi>T</mi></math></span>-periodic external force <span><math><mi>g</mi></math></span>. Furthermore, we investigate the existence of an inertial manifold for the solutions nearby that periodic solution. The distribution of eigenvalues of Hodge Laplacian leads to the validity of the spectral gap condition yielding the existence of an inertial manifold.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113889\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001439\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001439","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diffusion on d-sphere: Periodicity and inertial manifolds
On a -sphere , we consider the diffusion equation of the form for vector fields on and Hodge Laplacian . We prove the existence of a -periodic solution to that equation under the action of a -periodic external force . Furthermore, we investigate the existence of an inertial manifold for the solutions nearby that periodic solution. The distribution of eigenvalues of Hodge Laplacian leads to the validity of the spectral gap condition yielding the existence of an inertial manifold.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.