{"title":"质数集合的自动性","authors":"Thomas Dubbe","doi":"10.1016/j.tcs.2025.115480","DOIUrl":null,"url":null,"abstract":"<div><div>For an integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mi>A</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>. The <em>q</em>-automaticity <span><math><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of a set <span><math><mi>X</mi></math></span> is the size of the smallest automaton over the alphabet <span><math><mi>A</mi></math></span> that recognizes <span><math><mi>X</mi></math></span> on all words of length ≤<em>x</em>. We show that the <em>q</em>-automaticity of the set of primes is at least <span><math><mi>x</mi><mi>exp</mi><mo></mo><mrow><mo>(</mo><mo>−</mo><mi>c</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi><mo>)</mo></mrow></math></span>, which is fairly close to the maximal <em>q</em>-automaticity.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1053 ","pages":"Article 115480"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The automaticity of the set of primes\",\"authors\":\"Thomas Dubbe\",\"doi\":\"10.1016/j.tcs.2025.115480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For an integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mi>A</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>. The <em>q</em>-automaticity <span><math><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of a set <span><math><mi>X</mi></math></span> is the size of the smallest automaton over the alphabet <span><math><mi>A</mi></math></span> that recognizes <span><math><mi>X</mi></math></span> on all words of length ≤<em>x</em>. We show that the <em>q</em>-automaticity of the set of primes is at least <span><math><mi>x</mi><mi>exp</mi><mo></mo><mrow><mo>(</mo><mo>−</mo><mi>c</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi><mo>)</mo></mrow></math></span>, which is fairly close to the maximal <em>q</em>-automaticity.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1053 \",\"pages\":\"Article 115480\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004189\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
For an integer , let . The q-automaticity of a set is the size of the smallest automaton over the alphabet that recognizes on all words of length ≤x. We show that the q-automaticity of the set of primes is at least , which is fairly close to the maximal q-automaticity.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.