通过可解释的机器学习模型预测青少年特发性脊柱侧凸的Cobb角

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-17 DOI:10.1016/j.array.2025.100455
Yu Ding , Bin Li , Xiaoyong Guo
{"title":"通过可解释的机器学习模型预测青少年特发性脊柱侧凸的Cobb角","authors":"Yu Ding ,&nbsp;Bin Li ,&nbsp;Xiaoyong Guo","doi":"10.1016/j.array.2025.100455","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to build an accurate and interpretable machine learning model capable of adolescent idiopathic scoliosis prognostication. A tree-based gradient boosting machine is incorporated with a recently proposed Shapley-value-based explanation method-TreeExplainer. Anthropometric training data are collected from a public orthopedics clinic, and each instance is characterized by nine features with a prediction target. We adopt a transfer-learning strategy that takes advantage of the additive property of tree-based gradient boosting, allowing a gradient boosting machine regressor to be trained with limited labeled examples. Cross-validation estimation shows a satisfactory performance for predicting future spine curvature (Cobb angle). The root mean square error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), the mean absolute percentage error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), and the Pearson correlation coefficient are 3.69 ± 1.23, 2.81 ± 1.69, and 0.92 ± 0.01, respectively. Moreover, the overfitting has been largely removed, and the model may be generalized well to new patients. A well-trained model is taken as the input to the TreeExplainer. The output of the TreeExplainer provides us a richer understanding that demonstrates how a feature’s value impacts the model’s prediction for every instance. The patterns identified can substantially improve the human-artificial intelligence collaboration in the clinical management of patients with adolescent idiopathic scoliosis by preventing serious scoliosis progression and reducing healthcare costs.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100455"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobb angle prediction for adolescent idiopathic scoliosis via an explainable machine learning model\",\"authors\":\"Yu Ding ,&nbsp;Bin Li ,&nbsp;Xiaoyong Guo\",\"doi\":\"10.1016/j.array.2025.100455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to build an accurate and interpretable machine learning model capable of adolescent idiopathic scoliosis prognostication. A tree-based gradient boosting machine is incorporated with a recently proposed Shapley-value-based explanation method-TreeExplainer. Anthropometric training data are collected from a public orthopedics clinic, and each instance is characterized by nine features with a prediction target. We adopt a transfer-learning strategy that takes advantage of the additive property of tree-based gradient boosting, allowing a gradient boosting machine regressor to be trained with limited labeled examples. Cross-validation estimation shows a satisfactory performance for predicting future spine curvature (Cobb angle). The root mean square error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), the mean absolute percentage error (<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), and the Pearson correlation coefficient are 3.69 ± 1.23, 2.81 ± 1.69, and 0.92 ± 0.01, respectively. Moreover, the overfitting has been largely removed, and the model may be generalized well to new patients. A well-trained model is taken as the input to the TreeExplainer. The output of the TreeExplainer provides us a richer understanding that demonstrates how a feature’s value impacts the model’s prediction for every instance. The patterns identified can substantially improve the human-artificial intelligence collaboration in the clinical management of patients with adolescent idiopathic scoliosis by preventing serious scoliosis progression and reducing healthcare costs.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"27 \",\"pages\":\"Article 100455\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625000827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立一个准确且可解释的机器学习模型,用于青少年特发性脊柱侧凸的预测。将基于树的梯度增强机与最近提出的基于shapley值的解释方法treeexplainer相结合。人体测量训练数据收集自一家公共骨科诊所,每个实例具有9个特征和预测目标。我们采用了一种迁移学习策略,该策略利用了基于树的梯度增强的可加性,允许梯度增强机器回归器用有限的标记示例进行训练。交叉验证估计在预测未来脊柱曲度(Cobb角)方面表现令人满意。均方根误差(°)、平均绝对百分比误差(°)和Pearson相关系数分别为3.69±1.23、2.81±1.69和0.92±0.01。此外,过度拟合在很大程度上被去除,模型可以很好地推广到新患者。一个训练有素的模型被作为TreeExplainer的输入。TreeExplainer的输出为我们提供了更丰富的理解,演示了特征值如何影响模型对每个实例的预测。所确定的模式可以通过预防严重的脊柱侧凸进展和降低医疗成本,大大改善青少年特发性脊柱侧凸患者临床管理中的人类-人工智能协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cobb angle prediction for adolescent idiopathic scoliosis via an explainable machine learning model

Cobb angle prediction for adolescent idiopathic scoliosis via an explainable machine learning model
This study aims to build an accurate and interpretable machine learning model capable of adolescent idiopathic scoliosis prognostication. A tree-based gradient boosting machine is incorporated with a recently proposed Shapley-value-based explanation method-TreeExplainer. Anthropometric training data are collected from a public orthopedics clinic, and each instance is characterized by nine features with a prediction target. We adopt a transfer-learning strategy that takes advantage of the additive property of tree-based gradient boosting, allowing a gradient boosting machine regressor to be trained with limited labeled examples. Cross-validation estimation shows a satisfactory performance for predicting future spine curvature (Cobb angle). The root mean square error (), the mean absolute percentage error (), and the Pearson correlation coefficient are 3.69 ± 1.23, 2.81 ± 1.69, and 0.92 ± 0.01, respectively. Moreover, the overfitting has been largely removed, and the model may be generalized well to new patients. A well-trained model is taken as the input to the TreeExplainer. The output of the TreeExplainer provides us a richer understanding that demonstrates how a feature’s value impacts the model’s prediction for every instance. The patterns identified can substantially improve the human-artificial intelligence collaboration in the clinical management of patients with adolescent idiopathic scoliosis by preventing serious scoliosis progression and reducing healthcare costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信