博士:在姿势引导的角色动画中保存人类身份

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenjie Zheng, Xingze Zou, Lianrui Mu, Jing Wang, Jiaqi Hu, Jiangnan Ye, Jiedong Zhuang, Mudassar Ali, Olumayowa Idowu, Haoji Hu
{"title":"博士:在姿势引导的角色动画中保存人类身份","authors":"Wenjie Zheng,&nbsp;Xingze Zou,&nbsp;Lianrui Mu,&nbsp;Jing Wang,&nbsp;Jiaqi Hu,&nbsp;Jiangnan Ye,&nbsp;Jiedong Zhuang,&nbsp;Mudassar Ali,&nbsp;Olumayowa Idowu,&nbsp;Haoji Hu","doi":"10.1016/j.neucom.2025.130885","DOIUrl":null,"url":null,"abstract":"<div><div>Generating pose-guided human animation videos is a challenging task, particularly in maintaining consistent facial identity (ID) between the generated video and the reference image. Despite significant advancements in diffusion-based human animation models, existing methods, which mainly rely on basic conditioning mechanisms, often struggle with facial consistency and realism, especially when the face occupies a small region in the reference. This paper proposes a facial-area-aware approach, <strong>PHiD</strong>, designed to enhance facial ID similarity while ensuring strong structural and temporal coherence. Specifically, we propose a <strong>Pose-Driven Face Morphing</strong> module that leverages the 3D Morphable Model to synthesize proxy faces based on the reference ID and target pose, generating multi-view features to enhance temporal consistency. Additionally, we introduce a <strong>Masked Face Adapter (MFA)</strong> that embeds the proxy face and employs masked attention on facial regions to capture and refine localized facial features accurately. To enable effective training of MFA, we design a <strong>Facial ID-Preserving Loss</strong> that combines feature similarity, reconstruction, and pose consistency terms. Notably, our method demonstrates strong generalization capabilities and can be seamlessly integrated into existing pose-guided image-to-video models. Extensive experiments show that our approach outperforms baseline methods in generating human animation videos with improved facial consistency and similarity.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130885"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PHiD: Preserving human identity in pose-guided character animation\",\"authors\":\"Wenjie Zheng,&nbsp;Xingze Zou,&nbsp;Lianrui Mu,&nbsp;Jing Wang,&nbsp;Jiaqi Hu,&nbsp;Jiangnan Ye,&nbsp;Jiedong Zhuang,&nbsp;Mudassar Ali,&nbsp;Olumayowa Idowu,&nbsp;Haoji Hu\",\"doi\":\"10.1016/j.neucom.2025.130885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generating pose-guided human animation videos is a challenging task, particularly in maintaining consistent facial identity (ID) between the generated video and the reference image. Despite significant advancements in diffusion-based human animation models, existing methods, which mainly rely on basic conditioning mechanisms, often struggle with facial consistency and realism, especially when the face occupies a small region in the reference. This paper proposes a facial-area-aware approach, <strong>PHiD</strong>, designed to enhance facial ID similarity while ensuring strong structural and temporal coherence. Specifically, we propose a <strong>Pose-Driven Face Morphing</strong> module that leverages the 3D Morphable Model to synthesize proxy faces based on the reference ID and target pose, generating multi-view features to enhance temporal consistency. Additionally, we introduce a <strong>Masked Face Adapter (MFA)</strong> that embeds the proxy face and employs masked attention on facial regions to capture and refine localized facial features accurately. To enable effective training of MFA, we design a <strong>Facial ID-Preserving Loss</strong> that combines feature similarity, reconstruction, and pose consistency terms. Notably, our method demonstrates strong generalization capabilities and can be seamlessly integrated into existing pose-guided image-to-video models. Extensive experiments show that our approach outperforms baseline methods in generating human animation videos with improved facial consistency and similarity.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130885\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225015577\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015577","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生成姿势引导的人体动画视频是一项具有挑战性的任务,特别是在生成的视频和参考图像之间保持一致的面部身份(ID)。尽管基于扩散的人体动画模型取得了重大进展,但现有的方法主要依赖于基本的条件反射机制,往往难以达到面部的一致性和真实感,特别是当面部在参考中占据很小的区域时。本文提出了一种面部区域感知方法,phd,旨在增强面部ID的相似性,同时确保强大的结构和时间一致性。具体而言,我们提出了一个姿态驱动的人脸变形模块,该模块利用3D变形模型根据参考ID和目标姿态合成代理人脸,生成多视图特征以增强时间一致性。此外,我们还引入了一个掩码人脸适配器(MFA),该适配器嵌入代理人脸,并在面部区域上使用掩码注意力来准确捕获和细化局部面部特征。为了有效地训练MFA,我们设计了一种结合特征相似性、重构和姿态一致性的面部id保留损失算法。值得注意的是,我们的方法展示了强大的泛化能力,可以无缝集成到现有的姿势引导图像到视频模型中。大量的实验表明,我们的方法在生成人脸一致性和相似性方面优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHiD: Preserving human identity in pose-guided character animation
Generating pose-guided human animation videos is a challenging task, particularly in maintaining consistent facial identity (ID) between the generated video and the reference image. Despite significant advancements in diffusion-based human animation models, existing methods, which mainly rely on basic conditioning mechanisms, often struggle with facial consistency and realism, especially when the face occupies a small region in the reference. This paper proposes a facial-area-aware approach, PHiD, designed to enhance facial ID similarity while ensuring strong structural and temporal coherence. Specifically, we propose a Pose-Driven Face Morphing module that leverages the 3D Morphable Model to synthesize proxy faces based on the reference ID and target pose, generating multi-view features to enhance temporal consistency. Additionally, we introduce a Masked Face Adapter (MFA) that embeds the proxy face and employs masked attention on facial regions to capture and refine localized facial features accurately. To enable effective training of MFA, we design a Facial ID-Preserving Loss that combines feature similarity, reconstruction, and pose consistency terms. Notably, our method demonstrates strong generalization capabilities and can be seamlessly integrated into existing pose-guided image-to-video models. Extensive experiments show that our approach outperforms baseline methods in generating human animation videos with improved facial consistency and similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信