基于深度学习的目标跟踪研究综述

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guochen Zhao , Fanyong Meng , Chengzhuan Yang , Hui Wei , Dawei Zhang , Zhonglong Zheng
{"title":"基于深度学习的目标跟踪研究综述","authors":"Guochen Zhao ,&nbsp;Fanyong Meng ,&nbsp;Chengzhuan Yang ,&nbsp;Hui Wei ,&nbsp;Dawei Zhang ,&nbsp;Zhonglong Zheng","doi":"10.1016/j.neucom.2025.130988","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of deep learning has led to a surge in the development of object-tracking algorithms. Given the diverse objectives, backbone networks, and application methodologies, this study aims to integrate the prevalent tracking approaches comprehensively. We propose a systematic classification scheme based on application scenarios and primary methods, accompanied by a thorough analysis and concise summaries of each category. This approach provides a broader coverage of tracking techniques, facilitating a quicker understanding of the domain for novice researchers. In addition, we present standardized evaluation metrics and widely used datasets, including cross-method performance comparisons of selected algorithms on identical benchmarks to enhance the reader’s contextual understanding. Finally, we offer a critical assessment of current limitations, practical recommendations, and forward-looking perspectives to guide future research directions.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130988"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of object tracking based on deep learning\",\"authors\":\"Guochen Zhao ,&nbsp;Fanyong Meng ,&nbsp;Chengzhuan Yang ,&nbsp;Hui Wei ,&nbsp;Dawei Zhang ,&nbsp;Zhonglong Zheng\",\"doi\":\"10.1016/j.neucom.2025.130988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid advancement of deep learning has led to a surge in the development of object-tracking algorithms. Given the diverse objectives, backbone networks, and application methodologies, this study aims to integrate the prevalent tracking approaches comprehensively. We propose a systematic classification scheme based on application scenarios and primary methods, accompanied by a thorough analysis and concise summaries of each category. This approach provides a broader coverage of tracking techniques, facilitating a quicker understanding of the domain for novice researchers. In addition, we present standardized evaluation metrics and widely used datasets, including cross-method performance comparisons of selected algorithms on identical benchmarks to enhance the reader’s contextual understanding. Finally, we offer a critical assessment of current limitations, practical recommendations, and forward-looking perspectives to guide future research directions.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130988\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016601\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016601","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习的快速发展导致了目标跟踪算法的发展激增。鉴于不同的目标、主干网和应用方法,本研究旨在全面整合流行的跟踪方法。我们根据应用场景和主要方法提出了系统的分类方案,并对每个类别进行了深入的分析和简明的总结。这种方法提供了更广泛的跟踪技术覆盖范围,便于新手研究人员更快地理解该领域。此外,我们提出了标准化的评估指标和广泛使用的数据集,包括在相同基准上对选定算法的跨方法性能比较,以增强读者的上下文理解。最后,我们对当前的局限性、实用建议和前瞻性观点进行了批判性评估,以指导未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of object tracking based on deep learning
The rapid advancement of deep learning has led to a surge in the development of object-tracking algorithms. Given the diverse objectives, backbone networks, and application methodologies, this study aims to integrate the prevalent tracking approaches comprehensively. We propose a systematic classification scheme based on application scenarios and primary methods, accompanied by a thorough analysis and concise summaries of each category. This approach provides a broader coverage of tracking techniques, facilitating a quicker understanding of the domain for novice researchers. In addition, we present standardized evaluation metrics and widely used datasets, including cross-method performance comparisons of selected algorithms on identical benchmarks to enhance the reader’s contextual understanding. Finally, we offer a critical assessment of current limitations, practical recommendations, and forward-looking perspectives to guide future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信