{"title":"来自全息无序的临界自旋模型","authors":"Dimitris Saraidaris, Alexander Jahn","doi":"10.22331/q-2025-07-22-1808","DOIUrl":null,"url":null,"abstract":"Discrete models of holographic dualities, typically modeled by tensor networks on hyperbolic tilings, produce quantum states with a characteristic quasiperiodic disorder not present in continuum holography. In this work, we study the behavior of XXZ spin chains with such symmetries, showing that lessons learned from previous non-interacting (matchgate) tensor networks generalize to more generic Hamiltonians under holographic disorder: While the disorder breaks translation invariance, site-averaged correlations and entanglement of the disorder-free critical phase are preserved at a plateau of nonzero disorder even at large system sizes. In particular, we show numerically that the entanglement entropy curves in this disordered phase follow the expected scaling of a conformal field theory (CFT) in the continuum limit. This property is shown to be non-generic for other types of quasiperiodic disorder, only appearing when our boundary disorder ansatz is described by a \"dual\" bulk hyperbolic tiling. Our results therefore suggest the existence of a whole class of critical phases whose symmetries are derived from models of discrete holography.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"115 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical spin models from holographic disorder\",\"authors\":\"Dimitris Saraidaris, Alexander Jahn\",\"doi\":\"10.22331/q-2025-07-22-1808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete models of holographic dualities, typically modeled by tensor networks on hyperbolic tilings, produce quantum states with a characteristic quasiperiodic disorder not present in continuum holography. In this work, we study the behavior of XXZ spin chains with such symmetries, showing that lessons learned from previous non-interacting (matchgate) tensor networks generalize to more generic Hamiltonians under holographic disorder: While the disorder breaks translation invariance, site-averaged correlations and entanglement of the disorder-free critical phase are preserved at a plateau of nonzero disorder even at large system sizes. In particular, we show numerically that the entanglement entropy curves in this disordered phase follow the expected scaling of a conformal field theory (CFT) in the continuum limit. This property is shown to be non-generic for other types of quasiperiodic disorder, only appearing when our boundary disorder ansatz is described by a \\\"dual\\\" bulk hyperbolic tiling. Our results therefore suggest the existence of a whole class of critical phases whose symmetries are derived from models of discrete holography.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-22-1808\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1808","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Discrete models of holographic dualities, typically modeled by tensor networks on hyperbolic tilings, produce quantum states with a characteristic quasiperiodic disorder not present in continuum holography. In this work, we study the behavior of XXZ spin chains with such symmetries, showing that lessons learned from previous non-interacting (matchgate) tensor networks generalize to more generic Hamiltonians under holographic disorder: While the disorder breaks translation invariance, site-averaged correlations and entanglement of the disorder-free critical phase are preserved at a plateau of nonzero disorder even at large system sizes. In particular, we show numerically that the entanglement entropy curves in this disordered phase follow the expected scaling of a conformal field theory (CFT) in the continuum limit. This property is shown to be non-generic for other types of quasiperiodic disorder, only appearing when our boundary disorder ansatz is described by a "dual" bulk hyperbolic tiling. Our results therefore suggest the existence of a whole class of critical phases whose symmetries are derived from models of discrete holography.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.