基于字典的低次归一化和电路深度稀疏矩阵分块编码

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-22 DOI:10.22331/q-2025-07-22-1805
Chunlin Yang, Zexian Li, Hongmei Yao, Zhaobing Fan, Guofeng Zhang, Jianshe Liu
{"title":"基于字典的低次归一化和电路深度稀疏矩阵分块编码","authors":"Chunlin Yang, Zexian Li, Hongmei Yao, Zhaobing Fan, Guofeng Zhang, Jianshe Liu","doi":"10.22331/q-2025-07-22-1805","DOIUrl":null,"url":null,"abstract":"Block encoding severs as an important data input model in quantum algorithms, enabling quantum computers to simulate non-unitary operators effectively. In this paper, we propose an efficient block-encoding protocol for sparse matrices based on a novel data structure, called the dictionary data structure, which classifies all non-zero elements according to their values and indices. Non-zero elements with the same values, lacking common column and row indices, belong to the same classification in our block-encoding protocol's dictionary. When compiled into the $\\textit{{U(2), CNOT}}$ gate set, the protocol queries a $2^n \\times 2^n$ sparse matrix with $s$ non-zero elements at a circuit depth of $\\mathcal{O}(\\log(ns))$, utilizing $\\mathcal{O}(n^2s)$ ancillary qubits. This offers an exponential improvement in circuit depth relative to the number of system qubits, compared to existing methods [1,2] with a circuit depth of $\\mathcal{O}(n)$. Moreover, in our protocol, the subnormalization, a scaled factor that influences the measurement probability of ancillary qubits, is minimized to $\\sum_{l=0}^{s_0}\\vert A_l\\vert$, where $s_0$ denotes the number of classifications in the dictionary and $A_l$ represents the value of the $l$-th classification. Furthermore, we show that our protocol connects to linear combinations of unitaries $(LCU)$ and the sparse access input model $(SAIM)$. To demonstrate the practical utility of our approach, we provide several applications, including Laplacian matrices in graph problems and discrete differential operators.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"18 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dictionary-based Block Encoding of Sparse Matrices with Low Subnormalization and Circuit Depth\",\"authors\":\"Chunlin Yang, Zexian Li, Hongmei Yao, Zhaobing Fan, Guofeng Zhang, Jianshe Liu\",\"doi\":\"10.22331/q-2025-07-22-1805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block encoding severs as an important data input model in quantum algorithms, enabling quantum computers to simulate non-unitary operators effectively. In this paper, we propose an efficient block-encoding protocol for sparse matrices based on a novel data structure, called the dictionary data structure, which classifies all non-zero elements according to their values and indices. Non-zero elements with the same values, lacking common column and row indices, belong to the same classification in our block-encoding protocol's dictionary. When compiled into the $\\\\textit{{U(2), CNOT}}$ gate set, the protocol queries a $2^n \\\\times 2^n$ sparse matrix with $s$ non-zero elements at a circuit depth of $\\\\mathcal{O}(\\\\log(ns))$, utilizing $\\\\mathcal{O}(n^2s)$ ancillary qubits. This offers an exponential improvement in circuit depth relative to the number of system qubits, compared to existing methods [1,2] with a circuit depth of $\\\\mathcal{O}(n)$. Moreover, in our protocol, the subnormalization, a scaled factor that influences the measurement probability of ancillary qubits, is minimized to $\\\\sum_{l=0}^{s_0}\\\\vert A_l\\\\vert$, where $s_0$ denotes the number of classifications in the dictionary and $A_l$ represents the value of the $l$-th classification. Furthermore, we show that our protocol connects to linear combinations of unitaries $(LCU)$ and the sparse access input model $(SAIM)$. To demonstrate the practical utility of our approach, we provide several applications, including Laplacian matrices in graph problems and discrete differential operators.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-22-1805\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1805","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

块编码是量子算法中重要的数据输入模型,使量子计算机能够有效地模拟非酉算子。本文提出了一种高效的稀疏矩阵块编码协议,该协议基于一种新的数据结构,称为字典数据结构,它根据其值和索引对所有非零元素进行分类。具有相同值的非零元素,缺乏共同的列和行索引,在块编码协议的字典中属于相同的分类。当编译成$\textit{{U(2), CNOT}}$门集时,该协议利用$\mathcal{O}(n^2s)$辅助量子位元,在电路深度$\mathcal{O}(\log(ns))$处查询具有$s$非零元素的$2^n \times 2^n$稀疏矩阵。与电路深度为$\mathcal{O}(n)$的现有方法[1,2]相比,这提供了电路深度相对于系统量子比特数量的指数级改进。此外,在我们的协议中,影响辅助量子位测量概率的缩放因子次归一化被最小化到$\sum_{l=0}^{s_0}\vert A_l\vert$,其中$s_0$表示字典中的分类数量,$A_l$表示$l$ -th分类的值。此外,我们证明了我们的协议连接到一元的线性组合$(LCU)$和稀疏访问输入模型$(SAIM)$。为了证明我们的方法的实际效用,我们提供了几个应用,包括图问题中的拉普拉斯矩阵和离散微分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dictionary-based Block Encoding of Sparse Matrices with Low Subnormalization and Circuit Depth
Block encoding severs as an important data input model in quantum algorithms, enabling quantum computers to simulate non-unitary operators effectively. In this paper, we propose an efficient block-encoding protocol for sparse matrices based on a novel data structure, called the dictionary data structure, which classifies all non-zero elements according to their values and indices. Non-zero elements with the same values, lacking common column and row indices, belong to the same classification in our block-encoding protocol's dictionary. When compiled into the $\textit{{U(2), CNOT}}$ gate set, the protocol queries a $2^n \times 2^n$ sparse matrix with $s$ non-zero elements at a circuit depth of $\mathcal{O}(\log(ns))$, utilizing $\mathcal{O}(n^2s)$ ancillary qubits. This offers an exponential improvement in circuit depth relative to the number of system qubits, compared to existing methods [1,2] with a circuit depth of $\mathcal{O}(n)$. Moreover, in our protocol, the subnormalization, a scaled factor that influences the measurement probability of ancillary qubits, is minimized to $\sum_{l=0}^{s_0}\vert A_l\vert$, where $s_0$ denotes the number of classifications in the dictionary and $A_l$ represents the value of the $l$-th classification. Furthermore, we show that our protocol connects to linear combinations of unitaries $(LCU)$ and the sparse access input model $(SAIM)$. To demonstrate the practical utility of our approach, we provide several applications, including Laplacian matrices in graph problems and discrete differential operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信