{"title":"cram<s:1> - rao方法与玻色子态的全局量子估计","authors":"Masahito Hayashi, Yingkai Ouyang","doi":"10.22331/q-2025-07-22-1806","DOIUrl":null,"url":null,"abstract":"Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cramér Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cramér-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cramér-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cramér-Rao approach to extrapolate to the global estimation setting.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"32 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cramér-Rao approach and global quantum estimation of bosonic states\",\"authors\":\"Masahito Hayashi, Yingkai Ouyang\",\"doi\":\"10.22331/q-2025-07-22-1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cramér Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cramér-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cramér-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cramér-Rao approach to extrapolate to the global estimation setting.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-22-1806\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-22-1806","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The Cramér-Rao approach and global quantum estimation of bosonic states
Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cramér Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cramér-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cramér-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cramér-Rao approach to extrapolate to the global estimation setting.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.