Carlos Plaza-Sirvent, Hannah Sturm, Maximilian K. Nocke, Fatemeh Ghorbani, Clara Bessen, Marina C. Greweling-Pils, Stefan Floess, Jana Niemz, Jelle Huysentruyt, Peter Tougaard, Jochen Huehn, Robert Geffers, Daniel Todt, Peter Vandenabeele, Ingo Schmitz
{"title":"Ripk1对于保存调节性T细胞和调节性T细胞中的抑制转录程序至关重要","authors":"Carlos Plaza-Sirvent, Hannah Sturm, Maximilian K. Nocke, Fatemeh Ghorbani, Clara Bessen, Marina C. Greweling-Pils, Stefan Floess, Jana Niemz, Jelle Huysentruyt, Peter Tougaard, Jochen Huehn, Robert Geffers, Daniel Todt, Peter Vandenabeele, Ingo Schmitz","doi":"10.1038/s41418-025-01550-3","DOIUrl":null,"url":null,"abstract":"<p>Ripk1 plays an important role as a regulator of programmed cell death processes such as apoptosis and necroptosis and is involved in initiating pro-inflammatory NF-κB signaling. Immune tolerance depends on the proper function and homeostasis of regulatory T (Treg) cells. Here, we show that specific ablation of Ripk1 in Treg cells leads to systemically reduced Treg cell numbers resulting in spontaneous whole-body pathology. Using chimeric mice that allowed us to study Treg cells in the absence of inflammatory conditions, we observed a competitive disadvantage in vivo of Ripk1-deficient compared to Ripk1-proficient Treg cells. Furthermore, single-cell RNA sequencing revealed that Ripk1 is required for the maintenance of the effector Treg cell transcriptional signature, which is essential to prevent immune dysregulation. To overcome the limitation of low cell numbers in the chimeric mice, we isolated Treg cells from mice, in which Ripk1 could be deleted in a tamoxifen-inducible manner. Despite the strong reduction detected in Ripk1-deficient Treg cells of the chimeric mice, we did not observe impaired viability by the sole absence of Ripk1 in Treg cells from the inducible system. Of note, we observed reduced viability of activated Ripk1-deficient Treg cells in the presence of TNF. Together, these findings highlight the fundamental role of Ripk1 in maintaining immune homeostasis by preserving the highly suppressive effector Treg cells.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"17 1","pages":""},"PeriodicalIF":15.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ripk1 is critical for preserving effector regulatory T cells and the suppressive transcriptional program in regulatory T cells\",\"authors\":\"Carlos Plaza-Sirvent, Hannah Sturm, Maximilian K. Nocke, Fatemeh Ghorbani, Clara Bessen, Marina C. Greweling-Pils, Stefan Floess, Jana Niemz, Jelle Huysentruyt, Peter Tougaard, Jochen Huehn, Robert Geffers, Daniel Todt, Peter Vandenabeele, Ingo Schmitz\",\"doi\":\"10.1038/s41418-025-01550-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ripk1 plays an important role as a regulator of programmed cell death processes such as apoptosis and necroptosis and is involved in initiating pro-inflammatory NF-κB signaling. Immune tolerance depends on the proper function and homeostasis of regulatory T (Treg) cells. Here, we show that specific ablation of Ripk1 in Treg cells leads to systemically reduced Treg cell numbers resulting in spontaneous whole-body pathology. Using chimeric mice that allowed us to study Treg cells in the absence of inflammatory conditions, we observed a competitive disadvantage in vivo of Ripk1-deficient compared to Ripk1-proficient Treg cells. Furthermore, single-cell RNA sequencing revealed that Ripk1 is required for the maintenance of the effector Treg cell transcriptional signature, which is essential to prevent immune dysregulation. To overcome the limitation of low cell numbers in the chimeric mice, we isolated Treg cells from mice, in which Ripk1 could be deleted in a tamoxifen-inducible manner. Despite the strong reduction detected in Ripk1-deficient Treg cells of the chimeric mice, we did not observe impaired viability by the sole absence of Ripk1 in Treg cells from the inducible system. Of note, we observed reduced viability of activated Ripk1-deficient Treg cells in the presence of TNF. Together, these findings highlight the fundamental role of Ripk1 in maintaining immune homeostasis by preserving the highly suppressive effector Treg cells.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":15.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01550-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01550-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ripk1 is critical for preserving effector regulatory T cells and the suppressive transcriptional program in regulatory T cells
Ripk1 plays an important role as a regulator of programmed cell death processes such as apoptosis and necroptosis and is involved in initiating pro-inflammatory NF-κB signaling. Immune tolerance depends on the proper function and homeostasis of regulatory T (Treg) cells. Here, we show that specific ablation of Ripk1 in Treg cells leads to systemically reduced Treg cell numbers resulting in spontaneous whole-body pathology. Using chimeric mice that allowed us to study Treg cells in the absence of inflammatory conditions, we observed a competitive disadvantage in vivo of Ripk1-deficient compared to Ripk1-proficient Treg cells. Furthermore, single-cell RNA sequencing revealed that Ripk1 is required for the maintenance of the effector Treg cell transcriptional signature, which is essential to prevent immune dysregulation. To overcome the limitation of low cell numbers in the chimeric mice, we isolated Treg cells from mice, in which Ripk1 could be deleted in a tamoxifen-inducible manner. Despite the strong reduction detected in Ripk1-deficient Treg cells of the chimeric mice, we did not observe impaired viability by the sole absence of Ripk1 in Treg cells from the inducible system. Of note, we observed reduced viability of activated Ripk1-deficient Treg cells in the presence of TNF. Together, these findings highlight the fundamental role of Ripk1 in maintaining immune homeostasis by preserving the highly suppressive effector Treg cells.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.