De Lin , Lesley-Anne Pearson , Shamshad Ahmad, Sandra O’Neill, John Post, Colin Robinson, Duncan E. Scott, Ian H. Gilbert
{"title":"克服RapidFire核磁共振高通量筛选中的假阳性机制。","authors":"De Lin , Lesley-Anne Pearson , Shamshad Ahmad, Sandra O’Neill, John Post, Colin Robinson, Duncan E. Scott, Ian H. Gilbert","doi":"10.1016/j.slasd.2025.100252","DOIUrl":null,"url":null,"abstract":"<div><div>False-positives plague high-throughput screening in general and are costly as they consume resource and time to resolve. Methods that can rapidly identify such compounds at the initial screen are therefore of great value. Advances in mass spectrometry have led to the ability to screen inhibitors in drug discovery applications by direct detection of an enzyme reaction product. The technique is free from some of the artefacts that trouble classical assays such as fluorescence interference. Its direct nature negates the need for coupling enzymes and hence is simpler with fewer opportunities for artefacts. Despite its myriad advantages, we report here a mechanism for false-positive hits which has not been reported in the literature. Further we have developed a pipeline for detecting these false-positive hits and suggest a method to mitigate against them.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"35 ","pages":"Article 100252"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming a false-positive mechanism in RapidFire MRM-based high throughput screening\",\"authors\":\"De Lin , Lesley-Anne Pearson , Shamshad Ahmad, Sandra O’Neill, John Post, Colin Robinson, Duncan E. Scott, Ian H. Gilbert\",\"doi\":\"10.1016/j.slasd.2025.100252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>False-positives plague high-throughput screening in general and are costly as they consume resource and time to resolve. Methods that can rapidly identify such compounds at the initial screen are therefore of great value. Advances in mass spectrometry have led to the ability to screen inhibitors in drug discovery applications by direct detection of an enzyme reaction product. The technique is free from some of the artefacts that trouble classical assays such as fluorescence interference. Its direct nature negates the need for coupling enzymes and hence is simpler with fewer opportunities for artefacts. Despite its myriad advantages, we report here a mechanism for false-positive hits which has not been reported in the literature. Further we have developed a pipeline for detecting these false-positive hits and suggest a method to mitigate against them.</div></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"35 \",\"pages\":\"Article 100252\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555225000450\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555225000450","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Overcoming a false-positive mechanism in RapidFire MRM-based high throughput screening
False-positives plague high-throughput screening in general and are costly as they consume resource and time to resolve. Methods that can rapidly identify such compounds at the initial screen are therefore of great value. Advances in mass spectrometry have led to the ability to screen inhibitors in drug discovery applications by direct detection of an enzyme reaction product. The technique is free from some of the artefacts that trouble classical assays such as fluorescence interference. Its direct nature negates the need for coupling enzymes and hence is simpler with fewer opportunities for artefacts. Despite its myriad advantages, we report here a mechanism for false-positive hits which has not been reported in the literature. Further we have developed a pipeline for detecting these false-positive hits and suggest a method to mitigate against them.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).