引力Vlasov-Poisson系统的阻尼与振荡。

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
M. Hadžić, G. Rein, M. Schrecker, C. Straub
{"title":"引力Vlasov-Poisson系统的阻尼与振荡。","authors":"M. Hadžić,&nbsp;G. Rein,&nbsp;M. Schrecker,&nbsp;C. Straub","doi":"10.1007/s00205-025-02114-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a family of isolated inhomogeneous steady states of the gravitational Vlasov–Poisson system with a point mass at the centre. These are parametrised by the polytropic index <span>\\(k&gt;1/2\\)</span>, so that the phase space density of the steady state is <span>\\(C^1\\)</span> at the vacuum boundary if and only if <span>\\(k&gt;1\\)</span>. We prove the following sharp dichotomy result: if <span>\\(k&gt;1\\)</span>, the linear perturbations Landau damp and if <span>\\(1/2&lt; k\\le 1\\)</span> they do not. The above dichotomy is a new phenomenon and highlights the importance of steady state regularity at the vacuum boundary in the discussion of the long-time behaviour of the perturbations. Our proof of (nonquantitative) gravitational relaxation around steady states with <span>\\(k&gt;1\\)</span> is the first such result for the gravitational Vlasov–Poisson system. The key novelty of this work is the proof that no embedded eigenvalues exist in the essential spectrum of the linearised system.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271275/pdf/","citationCount":"0","resultStr":"{\"title\":\"Damping Versus Oscillations for a Gravitational Vlasov–Poisson System\",\"authors\":\"M. Hadžić,&nbsp;G. Rein,&nbsp;M. Schrecker,&nbsp;C. Straub\",\"doi\":\"10.1007/s00205-025-02114-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a family of isolated inhomogeneous steady states of the gravitational Vlasov–Poisson system with a point mass at the centre. These are parametrised by the polytropic index <span>\\\\(k&gt;1/2\\\\)</span>, so that the phase space density of the steady state is <span>\\\\(C^1\\\\)</span> at the vacuum boundary if and only if <span>\\\\(k&gt;1\\\\)</span>. We prove the following sharp dichotomy result: if <span>\\\\(k&gt;1\\\\)</span>, the linear perturbations Landau damp and if <span>\\\\(1/2&lt; k\\\\le 1\\\\)</span> they do not. The above dichotomy is a new phenomenon and highlights the importance of steady state regularity at the vacuum boundary in the discussion of the long-time behaviour of the perturbations. Our proof of (nonquantitative) gravitational relaxation around steady states with <span>\\\\(k&gt;1\\\\)</span> is the first such result for the gravitational Vlasov–Poisson system. The key novelty of this work is the proof that no embedded eigenvalues exist in the essential spectrum of the linearised system.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02114-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02114-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了中心有一个质点的引力Vlasov-Poisson系统的一组孤立的非均匀稳态。这些由多向指数k > / 2参数化,因此当且仅当k > 1时,稳态相空间密度在真空边界处为c1。我们证明了以下尖锐的二分类结果:当k / 2 k≤1时,线性扰动朗道阻尼,当1 / 2 k≤1时,线性扰动朗道阻尼不存在。上述二分法是一种新现象,突出了在讨论微扰的长期行为时真空边界处稳态正则性的重要性。我们的(非定量)引力弛豫与k > 1围绕稳定状态的证明是引力Vlasov-Poisson系统的第一个这样的结果。这项工作的关键新颖之处在于证明在线性化系统的本质谱中不存在嵌入特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Damping Versus Oscillations for a Gravitational Vlasov–Poisson System

Damping Versus Oscillations for a Gravitational Vlasov–Poisson System

We consider a family of isolated inhomogeneous steady states of the gravitational Vlasov–Poisson system with a point mass at the centre. These are parametrised by the polytropic index \(k>1/2\), so that the phase space density of the steady state is \(C^1\) at the vacuum boundary if and only if \(k>1\). We prove the following sharp dichotomy result: if \(k>1\), the linear perturbations Landau damp and if \(1/2< k\le 1\) they do not. The above dichotomy is a new phenomenon and highlights the importance of steady state regularity at the vacuum boundary in the discussion of the long-time behaviour of the perturbations. Our proof of (nonquantitative) gravitational relaxation around steady states with \(k>1\) is the first such result for the gravitational Vlasov–Poisson system. The key novelty of this work is the proof that no embedded eigenvalues exist in the essential spectrum of the linearised system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信